Advertisements
Advertisements
Question
Evaluate = `int (tan x)/(sec x + tan x)` . dx
Solution
Let I = `int (tan x)/(sec x + tan x)` . dx
I = `int (sinx/cosx)/((1/cosx + sinx/cosx))` dx
= `int ((sinx/cosx))/(((1 + sinx)/cos))` dx
= `int (sinx)/(1 + sin x)` dx
= `int [sinx/1 + sinx xx (1 - sinx)/(1 - sinx)]` dx
= `int (sin x - sin^2x)/cos^2x` dx
= `int (sinx - sin^2x)/cos^2x` dx
= `int sinx/cos. 1/cosx dx - int (sin^2x)/cos^2x dx`
= `int tan x . sec x dx - int (sec^2 x -1)` dx
= `int tanx. sec x dx - [int sec^2x dx - int 1. dx]`
= sec x - tan x + x + c
APPEARS IN
RELATED QUESTIONS
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
`int_"a"^"b" "f"(x) "d"x` = ______
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x)) dx` = ______.
`int_0^{pi/2} log(tanx)dx` = ______
`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_{pi/6}^{pi/3} sin^2x dx` = ______
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.
If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
The value of `int_0^(π/4) (sin 2x)dx` is ______.
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate `int_1^2(x+3)/(x(x+2)) dx`
Evaluate: `int_-1^1 x^17.cos^4x dx`
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`