English

Evaluate = Int (Tan X)/(Sec X + Tan X) . Dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate = `int (tan x)/(sec x + tan x)` . dx

Sum

Solution

Let I = `int (tan x)/(sec x + tan x)` . dx

I = `int (sinx/cosx)/((1/cosx + sinx/cosx))` dx

= `int ((sinx/cosx))/(((1 + sinx)/cos))` dx

= `int (sinx)/(1 + sin x)` dx

= `int [sinx/1 + sinx xx (1 - sinx)/(1 - sinx)]` dx

= `int (sin x - sin^2x)/cos^2x` dx

= `int (sinx - sin^2x)/cos^2x` dx

= `int sinx/cos. 1/cosx dx - int (sin^2x)/cos^2x dx`

= `int tan x . sec x dx - int (sec^2 x -1)` dx

= `int tanx. sec x dx - [int sec^2x dx - int 1. dx]`

= sec x - tan x + x + c

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (October)

APPEARS IN

RELATED QUESTIONS

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) cos^2 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (2log sin x - log sin 2x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.


\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]

`int_"a"^"b" "f"(x)  "d"x` = ______


`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))  dx` = ______.


`int_0^{pi/2} log(tanx)dx` = ______


`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______ 


`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


`int_{pi/6}^{pi/3} sin^2x dx` = ______ 


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


Evaluate the following:

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.


If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.


If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.


The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.


What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?


Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x))  dx`


Evaluate `int_1^2(x+3)/(x(x+2))  dx`


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×