Advertisements
Advertisements
प्रश्न
Evaluate = `int (tan x)/(sec x + tan x)` . dx
उत्तर
Let I = `int (tan x)/(sec x + tan x)` . dx
I = `int (sinx/cosx)/((1/cosx + sinx/cosx))` dx
= `int ((sinx/cosx))/(((1 + sinx)/cos))` dx
= `int (sinx)/(1 + sin x)` dx
= `int [sinx/1 + sinx xx (1 - sinx)/(1 - sinx)]` dx
= `int (sin x - sin^2x)/cos^2x` dx
= `int (sinx - sin^2x)/cos^2x` dx
= `int sinx/cos. 1/cosx dx - int (sin^2x)/cos^2x dx`
= `int tan x . sec x dx - int (sec^2 x -1)` dx
= `int tanx. sec x dx - [int sec^2x dx - int 1. dx]`
= sec x - tan x + x + c
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx` if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
Evaluate : ∫ log (1 + x2) dx
Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?
`int_0^1 x tan^-1x dx` = ______
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
Evaluate:
`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
`int_0^(π/4) x. sec^2 x dx` = ______.
If `int_0^(π/2) log cos x dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2)dx`
Evaluate:
`int_0^sqrt(2)[x^2]dx`
Evaluate the following definite intergral:
`int_1^3logx dx`