Advertisements
Advertisements
प्रश्न
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
उत्तर
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = `1/2`.
Explanation:
Given that `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`
⇒ `1/4 int_0^"a" 1/((1/4 + x^2)) "d"x = pi/8`
⇒ `int_0^pi 1/([(1/2)^2 + x^2]) "d"x = pi/2`
⇒ `1/(1/2) [tan^-1 x/(1/2)]_0^"a" = pi/2`
⇒ `2[tan^-1 2"a" - tan^-1 0] = pi/2`
⇒ `tan^-1 2"a" = pi/4`
⇒ 2a = `tan pi/4`
⇒ 2a = 1
⇒ a = `1/2`.
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______
f(x) = `{:{(x^3/k; 0 ≤ x ≤ 2), (0; "otherwise"):}` is a p.d.f. of X. The value of k is ______
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =` ______.
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
`int_0^1 1/(2x + 5) dx` = ______.
If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0
⇒ `1/4 (square - square)` = 0
⇒ b4 – `square` = 0
⇒ (b2 – a2)(`square` + `square`) = 0
⇒ b2 – `square` = 0 as a2 + b2 ≠ 0
⇒ b = ± `square`
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
Evaluate the following limit :
`lim_("x"->3)[sqrt("x"+6)/"x"]`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`