Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
उत्तर
Let `"I" = int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"` ...(i)
⇒ `"I" = int_0^pi ((pi-"x")sin(pi-"x"))/(1+3cos^2(pi-"x"))d"x"`
= `int_0^pi (pisin"x")/(1+3cos^2"x")d"x" - int_0^pi (xsin"x")/(1+3cos^2"x")d"x"` ...(ii)
Adding (i) & (ii), we have
we get: `2"I" = int_0^pi(pisin"x")/(1+3 cos^2 "x")` dx
Put cos x = t
⇒ - sin x dx = dt, when x = 0
⇒ t = 1, for x = π ⇒ t = - 1
So, `2I = π int_1^-1 dt/(1 + 3t^2)`
⇒ `π/3 int_-1^1 (dt)/((1/sqrt3)^2 + (t)^2)`
⇒ `π/3 xx sqrt3 [tan^-1(sqrt3t)]_-1^1`
⇒ `(sqrt3π)/3 [ tan^-1sqrt3 - ( - tan^-1 sqrt3)]`
I = `(sqrt3π)/3. π/3 = sqrt3π^2/9`
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total revenue R is increasing.
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
`int_0^2 e^x dx` = ______.
`int_0^1 "e"^(2x) "d"x` = ______
`int_1^2 1/(2x + 3) dx` = ______
`int_2^4 x/(x^2 + 1) "d"x` = ______
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
`int_0^{pi/2} xsinx dx` = ______
`int_0^1 (1 - x)^5`dx = ______.
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =` ______.
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
If `int_0^(π/2) log cos x dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
Evaluate `int_-1^1 |x^4 - x|dx`.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate: `int_-1^1 x^17.cos^4x dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Evaluate:
`int_0^sqrt(2)[x^2]dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`