मराठी

Evaluate: ∫ π 0 X Sin X 1 + 3 Cos 2 X D X . - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.

बेरीज

उत्तर

Let `"I" = int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`  ...(i) 

 

⇒ `"I" = int_0^pi ((pi-"x")sin(pi-"x"))/(1+3cos^2(pi-"x"))d"x"`


= `int_0^pi (pisin"x")/(1+3cos^2"x")d"x" - int_0^pi (xsin"x")/(1+3cos^2"x")d"x"`        ...(ii)

Adding (i) & (ii), we have

we get: `2"I" = int_0^pi(pisin"x")/(1+3 cos^2 "x")` dx

Put cos x = t
⇒ - sin x dx = dt, when x = 0 

⇒ t = 1, for x = π ⇒ t = - 1

So, `2I = π int_1^-1 dt/(1 + 3t^2)`

 

⇒ `π/3 int_-1^1 (dt)/((1/sqrt3)^2 + (t)^2)`

 

⇒ `π/3 xx sqrt3 [tan^-1(sqrt3t)]_-1^1`

⇒ `(sqrt3π)/3 [ tan^-1sqrt3 - ( - tan^-1 sqrt3)]`

I = `(sqrt3π)/3. π/3 = sqrt3π^2/9`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) All India Set 1 E

संबंधित प्रश्‍न

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (2log sin x - log sin 2x)dx`


Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`


\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total  revenue R is increasing.


Using properties of definite integrals, evaluate 

`int_0^(π/2)  sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


`int_0^2 e^x dx` = ______.


`int_0^1 "e"^(2x) "d"x` = ______


`int_1^2 1/(2x + 3)  dx` = ______


`int_2^4 x/(x^2 + 1)  "d"x` = ______


`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?


`int_0^{pi/2} xsinx dx` = ______


`int_0^1 (1 - x)^5`dx = ______.


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.


Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.


Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


Evaluate `int_0^(π//4) log (1 + tanx)dx`.


Evaluate `int_-1^1 |x^4 - x|dx`.


Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Evaluate:

`int_0^sqrt(2)[x^2]dx`


Evaluate the following definite integral:

`int_-2^3(1)/(x + 5)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×