Advertisements
Advertisements
प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
उत्तर
Let `I = int_0^(pi/2) (2 log sin x - log sin 2x) dx`
`= int_0^(pi/2) [2 log sin x - log (2 sin x cos x)] dx`
`= int_0^(pi/2) [2 log sinx - log 2 - log sin x - log cos x] dx`
`= int_0^(pi/2) [log sin x - log 2 - log cos x] dx`
`= int_0^(pi/2) log sin x dx - int_0^(pi/2) log 2 dx - int_0^(pi/2) log cos x dx`
`= int_0^(pi/2) log sin x dx - int_0^(pi/2) log 2 dx - int_0^(pi/2) log cos (pi/2 - x) dx` `....[∵ int_0^a f (x) dx = int_0^a f (a - x) dx]`
`= int_0^(pi/2) log sinx dx - (log 2) [x]_0^(pi/2) - int_0^(pi/2) log sin x dx`
`= - (log 2) (pi/2 - 0)`
`= pi/2 log2`
`= pi/2 log (2)^-1`
`= pi/2 log (1/2)`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
Evaluate `int_(-2)^2x^2/(1+5^x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_(-5)^5 | x + 2| dx`
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx` if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
Evaluate`int (1)/(x(3+log x))dx`
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Evaluate = `int (tan x)/(sec x + tan x)` . dx
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x)) dx` = ______.
`int_1^2 1/(2x + 3) dx` = ______
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_0^4 1/(1 + sqrtx)`dx = ______.
`int_0^1 x tan^-1x dx` = ______
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
`int_{pi/6}^{pi/3} sin^2x dx` = ______
`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`
`int_0^1 "e"^(5logx) "d"x` = ______.
Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.
The integral `int_0^2||x - 1| -x|dx` is equal to ______.
Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.
Evaluate `int_-1^1 |x^4 - x|dx`.
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate:
`int_0^6 |x + 3|dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`