मराठी

By using the properties of the definite integral, evaluate the integral: ∫28|x-5|dx - Mathematics

Advertisements
Advertisements

प्रश्न

By using the properties of the definite integral, evaluate the integral:

`int_2^8 |x - 5| dx`

बेरीज

उत्तर

`int_2^8  abs (x - 5) dx`

Define,

`abs(x - 5) = {(-(x - 5), if x - 5 < 0, or x< 5),(x - 5, if x - 5 >= 0, or x >=5):}`

`= int_2^5  abs (x - 5)  dx + int_2^8  abs (x - 5)  dx`

`= - int_2^5  (x - 5)  dx + int_2^8  (x - 5)  dx`

`= - [x^2/2 - 5x]_2^5 + [x^2/2 - 5x]_5^8`

`= - [25/2 - 25 - 4/2 + 10]`

`= [64/2 - 4 - 25/2 + 25]`

`= - [(-9)/2] + [9/2]`

`= 9/2 + 9/2`

= 9

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.11 [पृष्ठ ३४७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.11 | Q 6 | पृष्ठ ३४७

संबंधित प्रश्‍न

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]

Evaluate`int (1)/(x(3+log x))dx` 


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


Evaluate = `int (tan x)/(sec x + tan x)` . dx


`int_(-7)^7 x^3/(x^2 + 7)  "d"x` = ______


State whether the following statement is True or False:

`int_(-5)^5 x/(x^2 + 7)  "d"x` = 10


Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`


`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


f(x) =  `{:{(x^3/k;       0 ≤ x ≤ 2), (0;     "otherwise"):}` is a p.d.f. of X. The value of k is ______


`int_0^1 x tan^-1x  dx` = ______ 


`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______ 


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


`int_-1^1x^2/(1+x^2)  dx=` ______.


`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.


If f(x) = `{{:(x^2",", "where"  0 ≤ x < 1),(sqrt(x)",", "when"  1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.


If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.


`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.


`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.


For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x  dx` is ______.


Evaluate the following limit :

`lim_("x"->3)[sqrt("x"+6)/"x"]`


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x))  dx`


Evaluate `int_1^2(x+3)/(x(x+2))  dx`


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Evaluate the following integral:

`int_-9^9 x^3 / (4 - x^2) dx`


Solve.

`int_0^1e^(x^2)x^3dx`


Evaluate:

`int_0^6 |x + 3|dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×