मराठी

Evaluate: ∫06|x+3|dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate:

`int_0^6 |x + 3|dx`

बेरीज

उत्तर

Let I = `int_0^6 |x + 3|dx`

As, 0 ≤ x ≤ 6

`\implies` – 3 ≤ x + 3 ≤ 9

x + 3 > 0

`\implies` |x + 3| = |x + 3|

∴ `int_0^6 |x + 3|dx = int_0^6 (x + 3)dx`

= `[x^2/2 + 3x]_0^6`

= `(6^2/2 + 3 xx 6) - 0`

= 18 + 18

= 36

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2023-2024 (February) Official

संबंधित प्रश्‍न

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 


By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^2 xsqrt(2 -x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


By using the properties of the definite integral, evaluate the integral:

`int_(pi/2)^(pi/2) sin^7 x dx`


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


f(x) =  `{:{(x^3/k;       0 ≤ x ≤ 2), (0;     "otherwise"):}` is a p.d.f. of X. The value of k is ______


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


`int_0^1|3x - 1|dx` equals ______.


`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.


Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`


Evaluate `int_0^(π//4) log (1 + tanx)dx`.


For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x  dx` is ______.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


Evaluate the following definite integral:

`int_4^9 1/sqrt"x" "dx"`


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Solve the following.

`int_0^1 e^(x^2) x^3dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×