Advertisements
Advertisements
प्रश्न
Evaluate:
`int_0^6 |x + 3|dx`
उत्तर
Let I = `int_0^6 |x + 3|dx`
As, 0 ≤ x ≤ 6
`\implies` – 3 ≤ x + 3 ≤ 9
x + 3 > 0
`\implies` |x + 3| = |x + 3|
∴ `int_0^6 |x + 3|dx = int_0^6 (x + 3)dx`
= `[x^2/2 + 3x]_0^6`
= `(6^2/2 + 3 xx 6) - 0`
= 18 + 18
= 36
APPEARS IN
संबंधित प्रश्न
If `int_0^alpha3x^2dx=8` then the value of α is :
(a) 0
(b) -2
(c) 2
(d) ±2
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^2 xsqrt(2 -x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
f(x) = `{:{(x^3/k; 0 ≤ x ≤ 2), (0; "otherwise"):}` is a p.d.f. of X. The value of k is ______
The value of `int_1^3 dx/(x(1 + x^2))` is ______
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
`int_0^1|3x - 1|dx` equals ______.
`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x dx` is ______.
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
Evaluate the following definite integral:
`int_4^9 1/sqrt"x" "dx"`
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`