Advertisements
Advertisements
प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
उत्तर
Let `I = int_0^(pi/2) sqrtsinx/(sqrt sinx + sqrt cos x) dx` ...(i)
Replace x to `(pi/2 - x)` in (i)
`[∵ int_0^a f (x) dx = int_0^a f (a - x) dx]`
`I = int_0^(pi/2) (sqrt sin (pi/2 - x))/ (sqrt sin (pi/2 - x) + sqrt cos (pi/2 - x)) dx`
`I = int_0^(pi/2) sqrtcosx/(sqrtcos x + sqrt sin x) dx` ...(ii)
Adding (i) and (ii), we get
`2I = int_0^(pi/2) [sqrt sinx/ (sqrt sinx + sqrt cos x) + sqrt cos x/(sqrt cos x + sqrt sinx)] dx`
`= int_0^(pi/2) (sqrt cos x + sqrt sin x)/(sqrt cosx + sqrt sin x)`
`= int_0^(pi/2) dx = [x]_0^(pi/2)`
`= pi/2 - 0`
`= pi/2`
⇒ `I = pi/4`
APPEARS IN
संबंधित प्रश्न
If `int_0^alpha3x^2dx=8` then the value of α is :
(a) 0
(b) -2
(c) 2
(d) ±2
Evaluate : `intsec^nxtanxdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_(-5)^5 | x + 2| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
Evaluate : ∫ log (1 + x2) dx
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
`int_2^3 x/(x^2 - 1)` dx = ______
`int_0^1 (1 - x)^5`dx = ______.
The value of `int_1^3 dx/(x(1 + x^2))` is ______
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______
`int_0^pi sin^2x.cos^2x dx` = ______
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
Evaluate the following:
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
Evaluate `int_-1^1 |x^4 - x|dx`.
Evaluate the following definite integral:
`int_4^9 1/sqrt"x" "dx"`
`int_-9^9 x^3/(4-x^2) dx` =______
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`