Advertisements
Advertisements
प्रश्न
Evaluate : `intsec^nxtanxdx`
उत्तर
`I=intsec^(n-1)xsecxtanx dx`
Let secx=t
`therefore secxtanx dx=dt`
`I=intt^(n-1)dt`
`=t^n/n+c`
`=sec^nx/n+C`
APPEARS IN
संबंधित प्रश्न
If `int_0^alpha3x^2dx=8` then the value of α is :
(a) 0
(b) -2
(c) 2
(d) ±2
Evaluate `int_(-2)^2x^2/(1+5^x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
Evaluate : ∫ log (1 + x2) dx
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_{pi/6}^{pi/3} sin^2x dx` = ______
The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______
Which of the following is true?
`int_0^1 "e"^(5logx) "d"x` = ______.
Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
Evaluate: `int_(-1)^3 |x^3 - x|dx`
`int_a^b f(x)dx` = ______.
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.
If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.
If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
The value of `int_0^(π/4) (sin 2x)dx` is ______.
Evaluate: `int_0^π x/(1 + sinx)dx`.
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
Evaluate:
`int_0^1 |2x + 1|dx`
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following integrals:
`int_-9^9 x^3/(4 - x^3 ) dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`