Advertisements
Advertisements
Question
Evaluate : `intsec^nxtanxdx`
Solution
`I=intsec^(n-1)xsecxtanx dx`
Let secx=t
`therefore secxtanx dx=dt`
`I=intt^(n-1)dt`
`=t^n/n+c`
`=sec^nx/n+C`
APPEARS IN
RELATED QUESTIONS
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
Evaluate`int (1)/(x(3+log x))dx`
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x)) dx` = ______.
Choose the correct alternative:
`int_(-9)^9 x^3/(4 - x^2) "d"x` =
Evaluate `int_0^1 x(1 - x)^5 "d"x`
`int_0^{pi/2} log(tanx)dx` = ______
`int_0^{pi/2} xsinx dx` = ______
`int_0^1 (1 - x)^5`dx = ______.
`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?
`int_0^pi sin^2x.cos^2x dx` = ______
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =` ______.
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
Evaluate the following:
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
Evaluate the following definite integral:
`int_4^9 1/sqrt"x" "dx"`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following integral:
`int_0^1 x (1 - x)^5 dx`
Evaluate:
`int_0^sqrt(2)[x^2]dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`