Advertisements
Advertisements
Question
Evaluate:
`int_0^sqrt(2)[x^2]dx`
Solution
`int_0^sqrt(2)[x^2]dx`
We know greatest integer function is discontinuous when x is an integer.
∴ `int_0^sqrt(2)[x^2]dx = int_0^1 0 dx + int_1^sqrt(2) 1 dx`
= `x|_1^sqrt(2)`
= `sqrt(2) - 1`
APPEARS IN
RELATED QUESTIONS
If `int_0^alpha3x^2dx=8` then the value of α is :
(a) 0
(b) -2
(c) 2
(d) ±2
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Find `dy/dx, if y = cos^-1 ( sin 5x)`
Evaluate : ∫ log (1 + x2) dx
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`
`int_"a"^"b" "f"(x) "d"x` = ______
`int_0^4 1/(1 + sqrtx)`dx = ______.
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
`int_0^{pi/2} cos^2x dx` = ______
`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`
`int_0^1 log(1/x - 1) "dx"` = ______.
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
Evaluate: `int_(-1)^3 |x^3 - x|dx`
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
Evaluate `int_-1^1 |x^4 - x|dx`.
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Evaluate `int_1^2(x+3)/(x(x+2)) dx`
Evaluate the following integrals:
`int_-9^9 x^3/(4 - x^3 ) dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Solve.
`int_0^1e^(x^2)x^3dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`