English

Evaluate: ∫02[x2]dx - Mathematics

Advertisements
Advertisements

Question

Evaluate:

`int_0^sqrt(2)[x^2]dx`

Sum

Solution

`int_0^sqrt(2)[x^2]dx`

We know greatest integer function is discontinuous when x is an integer.

∴ `int_0^sqrt(2)[x^2]dx = int_0^1 0  dx + int_1^sqrt(2) 1  dx`

= `x|_1^sqrt(2)`

= `sqrt(2) - 1`

shaalaa.com
  Is there an error in this question or solution?
2024-2025 (April) Specimen Paper

RELATED QUESTIONS

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


Find `dy/dx, if y = cos^-1 ( sin 5x)`


Evaluate :  ∫ log (1 + x2) dx


Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`


Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`


`int_"a"^"b" "f"(x)  "d"x` = ______


`int_0^4 1/(1 + sqrtx)`dx = ______.


`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.


`int_0^{pi/2} cos^2x  dx` = ______ 


`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`


`int_0^1 log(1/x - 1) "dx"` = ______.


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.


`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.


`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to ______.


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


Evaluate: `int_(-1)^3 |x^3 - x|dx`


Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`


Evaluate `int_-1^1 |x^4 - x|dx`.


`int_0^(2a)f(x)/(f(x)+f(2a-x))  dx` = ______


Evaluate `int_1^2(x+3)/(x(x+2))  dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Solve.

`int_0^1e^(x^2)x^3dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×