Advertisements
Advertisements
Question
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Solution
`int _a^b f(x) dx = int_a^b f (a + b -x ) dx`
Taking L.H.S
`int _a^b f (x) dx ` ..... ( i )
Let t = a + b - x
x = a + b - t
`(dx)/(dt) = 0 + 0 - 1`
⇒ dx = - dt
changing limits
at x = a t = a + b - a = b
x = b t = a + b - b = a
so integral (i) becomes
` int _b^a f (a + b - t )(- dt )`
using `int_a^b f(x) dx = - int_b^a f (x) dx `
⇒ `int_a^b f ( a + b -t ) dt`
changing variable
`int _a^b f ( a + b -x ) dx `
L.H.S = R.H.S
Hence proved.
`I = int _(pi/6)^(pi/3) 1/(1 +sqrt(tan x )) dx`
`I = int _(pi/6)^(pi/3) sqrt(cos x )/(sqrt(cos x ) + sin x ) dx` ......( i )
using property
`I = int _(pi/6)^(pi/3) (sqrt(cos (pi/6 + pi/3 -x)))/(cos sqrt(pi/6 + pi/3 - x) + sqrt(sin (pi/6 + pi/3 - x ))` dx
`I = int _(pi/6)^(pi/3) sqrt(sin x ) /(sqrt (sin x ) + sqrt (cos x) ) dx ` ....... ( ii )
Adding (i) & (ii)
`2I = int _(pi/6)^(pi/3) sqrt(cos x ) /(sqrt(cos x ) + sqrt( sin x ) ) dx + int_(pi/6)^(pi/3) sqrt( sin x) /( sqrt( sin x ) + sqrt( cos x ) ) dx `
`2I = int _(pi/6)^(pi/3) (sqrt(cos x ) + sqrt( sin x )) /( sqrt ( cos x ) + sqrt( sin x )) dx `
`2I = int _(pi/6)^(pi/3) dx`
`2I = int _(pi/6)^(pi/3) x`
`2I = pi / 3 - pi / 6 `
`2I = pi /6 `
` I = pi / 12 `
APPEARS IN
RELATED QUESTIONS
Evaluate : `intlogx/(1+logx)^2dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
`int_0^2 e^x dx` = ______.
`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =` ______.
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.
`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
The value of `int_0^(π/4) (sin 2x)dx` is ______.
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Evaluate: `int_-1^1 x^17.cos^4x dx`
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`