English

Prove that ∫ b a f ( x ) d x = ∫ b a f ( a + b − x ) d x and hence evaluate ∫ π 3 π 6 d x 1 + √ tan x . - Mathematics

Advertisements
Advertisements

Question

Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   

Sum

Solution

`int _a^b f(x) dx = int_a^b f (a + b -x ) dx`

Taking L.H.S 

`int _a^b f (x) dx `              ..... ( i )

Let t = a + b - x 

x = a + b - t 

`(dx)/(dt) = 0 + 0 - 1`

⇒ dx = - dt 

changing limits

at x = a  t = a + b - a = b 

x = b  t = a + b - b = a

so integral (i) becomes

` int _b^a f (a + b - t )(- dt )`

using `int_a^b f(x) dx = - int_b^a f (x) dx `

⇒ `int_a^b f ( a + b  -t ) dt`

changing variable

`int _a^b f ( a + b -x ) dx `

L.H.S = R.H.S
Hence proved. 

`I = int _(pi/6)^(pi/3) 1/(1 +sqrt(tan x ))  dx`

`I = int _(pi/6)^(pi/3) sqrt(cos x )/(sqrt(cos x ) + sin x )  dx`        ......( i )

using property

`I = int _(pi/6)^(pi/3) (sqrt(cos (pi/6 + pi/3 -x)))/(cos sqrt(pi/6 + pi/3 - x) +  sqrt(sin (pi/6 + pi/3 - x ))` dx

`I = int _(pi/6)^(pi/3) sqrt(sin x ) /(sqrt (sin x ) + sqrt (cos x) ) dx `         ....... ( ii ) 

Adding (i) & (ii) 

`2I = int _(pi/6)^(pi/3) sqrt(cos x ) /(sqrt(cos x ) + sqrt( sin x ) )  dx  + int_(pi/6)^(pi/3) sqrt( sin x) /( sqrt( sin x ) + sqrt( cos x ) ) dx `

`2I = int _(pi/6)^(pi/3) (sqrt(cos x ) + sqrt( sin x )) /( sqrt ( cos x ) + sqrt( sin x )) dx `

`2I = int _(pi/6)^(pi/3) dx`

`2I = int _(pi/6)^(pi/3) x`

`2I = pi / 3 -  pi / 6 `

`2I = pi /6 `

` I = pi / 12 `

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 65/3/3

RELATED QUESTIONS

 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) cos^2 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 


By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


Find : `int_  (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.


`int_0^2 e^x dx` = ______.


`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?


If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.


`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.


`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.


`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.


Evaluate `int_0^(π//4) log (1 + tanx)dx`.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


`int_0^(2a)f(x)/(f(x)+f(2a-x))  dx` = ______


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Solve the following.

`int_0^1 e^(x^2) x^3dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×