English

Evaluate : ∫logx/(1+logx)^2dx - Mathematics and Statistics

Advertisements
Advertisements

Question

 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

Solution


Problem:

`intlogx/(1+logx)^2dx`
adding and substracting 1 from numerator

`int (1-1+logx)/(1+logx)^2dx`

`int (1+logx)/(1+logx)^2dx-int(1)/(1+logx)^2 dx`

`int 1/(1+logx)dx-int(1)/(1+logx)^2 dx`
For the integral

` int 1/(1+logx)dx`
integrate by parts within the sum: ∫fg'=fg−∫f'g

`f= 1/(1+logx)dx, g'=1`

`f'=-(1)/(1+logx)^2, g=x`

`=-int(1)/(1+logx)^2 dx-int -1/(1+logx)^2dx+x/(log(x)+1)`

`=x/(log(x)+1)`

 

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (October)

APPEARS IN

RELATED QUESTIONS

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/4) log (1+ tan x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


Find `dy/dx, if y = cos^-1 ( sin 5x)`


Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


`int_0^1 "e"^(2x) "d"x` = ______


`int (cos x + x sin x)/(x(x + cos x))`dx = ?


`int_0^4 1/(1 + sqrtx)`dx = ______.


`int_-9^9 x^3/(4 - x^2)` dx = ______


f(x) =  `{:{(x^3/k;       0 ≤ x ≤ 2), (0;     "otherwise"):}` is a p.d.f. of X. The value of k is ______


`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______ 


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_0^9 1/(1 + sqrtx)` dx = ______ 


`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:


Evaluate: `int_(-1)^3 |x^3 - x|dx`


Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.


If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.


Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.


Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


Evaluate the following limit :

`lim_("x"->3)[sqrt("x"+6)/"x"]`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate `int_1^2(x+3)/(x(x+2))  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×