Advertisements
Advertisements
Question
Evaluate: `int_(-1)^3 |x^3 - x|dx`
Solution
Let I = `int_(-1)^2|x^3 - x|dx`
= `int_(-1)^2|x(x^2 - 1)|dx`
= `int_(-1)^2|x(x - 1)(x + 1)|dx`
Here, x3 – x = 0, when x = 0, 1, –1
Value of x | Value of (x3 – x) |
–1 < x < 0 | +ve |
0 < x < 1 | –ve |
1 < x < 2 | +ve |
∴ |x3 – x| = `{{:(x^3 - x, if -1 < x < 0 and 1 < x < 2),(-x^3 + x, if 0 < x < 1):}`
I = `int_(-1)^0(x^3 - x)dx + int_1^1(-x^3 + x)dx + int_1^2(x^3 - x)dx`
= `[x^4/4 - x^2/2]_-1^0 + [(-x^4)/4 + x^2/2]_0^1 + [x^4/4 - x^2/2]_1^2`
= `1/4 + 1/4 + 2 + 1/4`
= `2 + 3/4`
= `11/4`
APPEARS IN
RELATED QUESTIONS
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
Evaluate`int (1)/(x(3+log x))dx`
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
`int_"a"^"b" "f"(x) "d"x` = ______
Evaluate `int_1^3 x^2*log x "d"x`
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______
Which of the following is true?
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:
`int (dx)/(e^x + e^(-x))` is equal to ______.
The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2)) dx` is
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
If `int_0^(π/2) log cos x dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.
`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`