English

If ππ∫02πcos2x dx=k∫0π2cos2x dx, then the value of k is ______. - Mathematics

Advertisements
Advertisements

Question

If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.

Options

  • 4

  • 2

  • 1

  • 0

MCQ
Fill in the Blanks

Solution

If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is 4.

Explanation:

`int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`

Taking LHS = `int_0^(2π) cos^2 x  dx`

= `2int_0^π cos^2 x  dx` ...[∵ cos2 x is an even function]

= `2 xx 2int_0^(π/2) cos^2 x  dx`  ...[∵ cos2 x is an even function]

= `4int_0^(π/2) cos^2 x  dx`  

On comparing both sides, we get

k = 4.

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Outside Delhi Set 3

RELATED QUESTIONS

Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


`int_0^1 "e"^(2x) "d"x` = ______


`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?


`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______ 


`int_0^1 log(1/x - 1) "dx"` = ______.


`int_0^pi x sin^2x dx` = ______ 


Which of the following is true?


Evaluate the following:

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


`int_a^b f(x)dx` = ______.


`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.


If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.


If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.


The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.


`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×