Advertisements
Advertisements
Question
Evaluate the following:
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
Solution
Let I = `int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x` ......(i)
= `int_(- pi/4)^(pi/4) log|sin(pi/4 - pi/4 - x) + cos(pi/4 - pi/4 - x)|"d"x` ......`[because int_"a" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x]`
= `int_(- pi/4)^(pi/4) log|sin(-x) + cosx|"d"x`
= `int_(-pi/4)^(pi/4) log|cosx - sinx|"d"x` ......(ii)
Adding (i) and (ii), we get
2I = `int_(-pi/4)^(pi/4) log|cosx + sinx|"d"x + int_(-pi/4)^(pi/4) log|cosx - sinx|"d"x`
= `int_(-pi/4)^(pi/4) log|(cosx + sinx)(cosx - sinx)|"d"x`
= `int_(-pi/4)^(pi/4) log|cos^2x - sin^2x|"d"x`
∴ 2I = `int_(-pi/4)^(pi/4) log cos2x "d"x`
2I = `2 int_0^(pi/4) log cos 2x "d"x` .....`[because int_(-"a")^"a" "f"(x)"d"x = 2int_0^"a" "f"(x) "d"x "if" "f"(-x) = "f"(x)]`
∴ I = `int_0^(pi/4) log cos 2x "d"x`
Put 2x = t
⇒ dx = `"dt"//2`
Changing the limits we get
When x = 0
∴ t = 0
When x = `pi/4`
∴ t = `pi/2`
I = `1/2 int_0^(pi/2) log cos "t" "dt"` ......(iii)
I = `1/2 int_0^(pi/2) log cos (pi/2 - "t")"dt"`
I = `1/2 int_0^(pi/2) log sin "t" "dt"` ......(iv)
On adding (iii) and (iv), we get,
2I = `1/2 int_0^(pi/2) (log cos "t" + log sin "t")"dt"`
⇒ 2I = `1/2 int_0^(pi/2) log sin "t" cos "t" "dt"`
⇒ 2I = `1/2 int_0^(pi/2) (log 2 sin "t" cos "t")/2 "dt"`
⇒ 2I = `1/2 int_0^(pi/2) (log sin 2"t" - log 2) "dt"`
⇒ 4I = `int_0^(pi/2) log sin 2"t" "dt" - int_0^(pi/2) log 2 "dt"`
Put 2t = u
⇒ 2dt = du
⇒ dt = `"du"/2`
∴ 4I = `1/2 int_0^pi log sin "u" "du" - int_0^(pi/2) log 2 * "dt"`
⇒ 4I = `1/2 xx 2 int_0^(pi/2) log sin "u" "du" - log 2["t"]_0^(pi/2)`
⇒ 4I = `int_0^(pi/2) log sin "u" "du" - log 2 * pi/2`
⇒ 4I = `2"I" - pi/2 log 2` .....[From equation (ii)]
⇒ 2I = `- pi/2 log 2`
⇒ I = `pi/4 log 1/2`
∴ I = `pi/4 log 1/2`.
APPEARS IN
RELATED QUESTIONS
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx` if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
`int_1^2 1/(2x + 3) dx` = ______
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =` ______.
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
`int_0^1 1/(2x + 5) dx` = ______.
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?
`int_0^(π/4) x. sec^2 x dx` = ______.
Evaluate the following definite integral:
`int_4^9 1/sqrt"x" "dx"`
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate the following integral:
`int_0^1x(1 - x)^5dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_1^3logx dx`