English

Evaluate : - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate : `int _0^(pi/2) "sin"^ 2  "x"  "dx"`

Sum

Solution

`int _0^(pi/2) "sin"^ 2  "x"  "dx"`

i = `int _0^(pi/2) (1 - cos 2"x"   "dx") /2`         [∵ 1 - 2 cos2 θ = 2 sin 2 θ]

`["x"/2 - ("sin"2"x")/4]_0^(pi/2)`

=`(pi/4 -("sin" pi )/4) - (0 - 0)`

=`pi/4`

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (February) Set 1

RELATED QUESTIONS

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) cos^2 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`


Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx`  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.


\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]

Evaluate`int (1)/(x(3+log x))dx` 


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


Evaluate `int_1^3 x^2*log x  "d"x`


`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?


`int_0^{pi/2} log(tanx)dx` = ______


`int_2^3 x/(x^2 - 1)` dx = ______


`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______ 


`int_-9^9 x^3/(4 - x^2)` dx = ______


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_-1^1x^2/(1+x^2)  dx=` ______.


`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.


Evaluate the following:

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.


If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.


With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.


`int_0^(π/4) x. sec^2 x  dx` = ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.


Evaluate `int_0^(π//4) log (1 + tanx)dx`.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate the following integral:

`int_0^1 x (1 - x)^5 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×