Advertisements
Advertisements
Question
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
Options
`π/2`
`π/3`
`π/4`
`π/6`
MCQ
Fill in the Blanks
Solution
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to `underlinebb(π/4)`.
Explanation:
Let I = `int_0^(π/2) (root(n)(sec x))/(root(n)(secx) + root(n)("cosec" x))dx` ...(i)
= `int_0^(π/2) (root(n)sec(π/2 - x))/(root(n)(sec(π/2 - x)) + root(n)("cosec" (π/2 - x)))dx`
= `int_0^(π/2) root(n)("cosec" x)/(root(n)("cosec" x) + root(n)(sec x))dx` ...(ii)
After adding equation (i) and (ii), we get
2I = `int_0^(π/2) (root(n)(sec x) + root(n)("cosec" x))/(root(n)(sec x) + root(n)("cosec" x))dx`
`\implies` 2I = `int_0^(π/2) dx = [x]_0^(π/2)`
`\implies` 2I = `π/2`
Hence, I = `π/4`
shaalaa.com
Is there an error in this question or solution?