हिंदी

Πcosec∫0π2(secxnsecx+cosec xnn)dx is equal to ______. -

Advertisements
Advertisements

प्रश्न

`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.

विकल्प

  • `π/2`

  • `π/3`

  • `π/4`

  • `π/6`

MCQ
रिक्त स्थान भरें

उत्तर

`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to `underlinebb(π/4)`.

Explanation:

Let I = `int_0^(π/2) (root(n)(sec x))/(root(n)(secx) + root(n)("cosec"  x))dx`  ...(i)

= `int_0^(π/2) (root(n)sec(π/2 - x))/(root(n)(sec(π/2 - x)) + root(n)("cosec"  (π/2 - x)))dx`

= `int_0^(π/2) root(n)("cosec"  x)/(root(n)("cosec"  x) + root(n)(sec x))dx`  ...(ii)

After adding equation (i) and (ii), we get

2I = `int_0^(π/2) (root(n)(sec x) + root(n)("cosec"  x))/(root(n)(sec x) + root(n)("cosec"  x))dx`

`\implies` 2I = `int_0^(π/2) dx = [x]_0^(π/2)`

`\implies` 2I = `π/2`

Hence, I = `π/4`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×