Advertisements
Advertisements
Question
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
Solution
Let I = `int_0^(π//4) log (1 + tanx)dx` ...(i)
By using property
`int_0^a f(x) = int_0^a f(a - x)`
I = `int_0^(π//4) log [1 + tan(π/4 - x)]dx`
= `int_0^(π//4) log [1 + (tan π/4 - tan x)/(1 + tan π/4 tan x)]dx`
= `int_0^(π//4) log [1 + (1 - tanx)/(1 + tanx)]dx`
= `int_0^(π//4) log [2/(1 + tanx)]dx`
= `int_0^(π//4) log 2 - int_0^(π//4) log (1 + tanx)dx` ...(ii)
On adding equations (i) and (ii),
2I = `int_0^(π//4) log (1 + tanx)dx + int_0^(π//4) log 2 dx - int_0^(π//4) log (1 + tanx)dx`
`\implies` 2I = `int_0^(π//4) log 2 dx`
`\implies` 2I = `log 2 int_0^(π//4) 1.dx`
`\implies` 2I = `log 2 [x]_0^(π//4)`
`\implies` I = `log2/2 xx π/4 = π/8 log 2`
RELATED QUESTIONS
Evaluate : `intlogx/(1+logx)^2dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
Choose the correct alternative:
`int_(-9)^9 x^3/(4 - x^2) "d"x` =
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
`int_0^pi x sin^2x dx` = ______
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Evaluate the following definite intergral:
`int_1^3logx dx`