English

Evaluate π∫0π/4log(1+tanx)dx. - Mathematics

Advertisements
Advertisements

Question

Evaluate `int_0^(π//4) log (1 + tanx)dx`.

Sum

Solution

Let I = `int_0^(π//4) log (1 + tanx)dx`  ...(i)

By using property

`int_0^a f(x) = int_0^a f(a - x)`

I = `int_0^(π//4) log [1 + tan(π/4 - x)]dx`

= `int_0^(π//4) log [1 + (tan  π/4 - tan x)/(1 + tan  π/4 tan x)]dx`

= `int_0^(π//4) log [1 + (1 - tanx)/(1 + tanx)]dx`

= `int_0^(π//4) log [2/(1 + tanx)]dx`

= `int_0^(π//4) log 2 - int_0^(π//4) log (1 + tanx)dx`  ...(ii)

On adding equations (i) and (ii),

2I = `int_0^(π//4) log (1 + tanx)dx + int_0^(π//4) log 2 dx - int_0^(π//4) log (1 + tanx)dx`

`\implies` 2I = `int_0^(π//4) log 2 dx` 

`\implies` 2I = `log 2 int_0^(π//4) 1.dx`

`\implies` 2I = `log 2 [x]_0^(π//4)`

`\implies` I = `log2/2 xx π/4 = π/8 log 2`

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Outside Delhi Set 1

RELATED QUESTIONS

 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]

Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?


The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.


`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______ 


`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


`int_0^pi x sin^2x dx` = ______ 


`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.


`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.


If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.


`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.


Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


`int_0^(2a)f(x)/(f(x)+f(2a-x))  dx` = ______


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Evaluate the following integral:

`int_-9^9 x^3 / (4 - x^2) dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Evaluate the following definite intergral:

`int_1^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×