Advertisements
Advertisements
प्रश्न
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
उत्तर
Let I = `int_0^(π//4) log (1 + tanx)dx` ...(i)
By using property
`int_0^a f(x) = int_0^a f(a - x)`
I = `int_0^(π//4) log [1 + tan(π/4 - x)]dx`
= `int_0^(π//4) log [1 + (tan π/4 - tan x)/(1 + tan π/4 tan x)]dx`
= `int_0^(π//4) log [1 + (1 - tanx)/(1 + tanx)]dx`
= `int_0^(π//4) log [2/(1 + tanx)]dx`
= `int_0^(π//4) log 2 - int_0^(π//4) log (1 + tanx)dx` ...(ii)
On adding equations (i) and (ii),
2I = `int_0^(π//4) log (1 + tanx)dx + int_0^(π//4) log 2 dx - int_0^(π//4) log (1 + tanx)dx`
`\implies` 2I = `int_0^(π//4) log 2 dx`
`\implies` 2I = `log 2 int_0^(π//4) 1.dx`
`\implies` 2I = `log 2 [x]_0^(π//4)`
`\implies` I = `log2/2 xx π/4 = π/8 log 2`
संबंधित प्रश्न
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
Evaluate = `int (tan x)/(sec x + tan x)` . dx
`int_(-7)^7 x^3/(x^2 + 7) "d"x` = ______
`int_0^{pi/2} log(tanx)dx` = ______
`int_0^{pi/2} xsinx dx` = ______
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______
Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
Evaluate:
`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
`int_0^1|3x - 1|dx` equals ______.
What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?
Evaluate `int_-1^1 |x^4 - x|dx`.
`int_1^2 x logx dx`= ______
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2)dx`
Evaluate the following integral:
`int_0^1 x (1 - x)^5 dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`
Evaluate the following definite intergral:
`int_1^3logx dx`