हिंदी

Evaluate : ∫ex[√(1−x2)sin^−1 x+1/√(1−x2)]dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`

उत्तर

`int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`

`=int e^x[sin^-1x +1/ (sqrt(1-x^2))]dx`

We know that  `inte^x[f(x)+f'(x)]dx=e^x.f(x)+c`

`=e^x.sin^-1x+c`

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March)

APPEARS IN

संबंधित प्रश्न

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_2^8 |x - 5| dx`


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


Find `dy/dx, if y = cos^-1 ( sin 5x)`


Evaluate :  ∫ log (1 + x2) dx


`int_2^4 x/(x^2 + 1)  "d"x` = ______


Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`


`int_0^{pi/2} log(tanx)dx` = ______


`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.


`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


`int_0^1 log(1/x - 1) "dx"` = ______.


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


Evaluate the following:

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


`int (dx)/(e^x + e^(-x))` is equal to ______.


Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`


`int_0^1 1/(2x + 5) dx` = ______.


Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.


Evaluate `int_0^(π//4) log (1 + tanx)dx`.


`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.


Evaluate the following limit :

`lim_("x"->3)[sqrt("x"+6)/"x"]`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate:

`int_0^1 |2x + 1|dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Evaluate:

`int_0^6 |x + 3|dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate the following definite intergral:

`int_1^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×