हिंदी

Prove that ∫0af(x)dx=∫0af(a-x) dx hence evaluate ∫0(π/2)sinx/(sinx+cosx) dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`

उत्तर

Let I = `int_0^af(x)dx`

Put x = a – t
∴ dx = – dt
When x = 0, t = a - 0 = a
When x = a, t = a - a = 0

`I=int_0^af(x)dx=int_a^0f(a-t)(-dt)`

`=-int_a^0f(a-t)dt`         ......[`∵int_a^bf(x)dx=-int_b^af(x)dx`]

`=int_0^af(a-x)dx`         ......[`∵int_a^bf(x)dx=-int_b^af(t)dx`]

`therefore int_0^af(x)dx=int_0^af(a-x)dx`

Let I=`int_0^(pi/2)sinx/(sinx+cosx)`            ........(i)

`I=int_0^(pi/2)sin(pi/2-x)/(sin(pi/2-x)+cos(pi/2-x))`       ......[`∵int_0^af(x)dx=-int_0^af(a-x)dx`]

`=int_0^(pi/2)cosx/(cosx+sinx)dx`         ............(ii)

Adding (i) and (ii), we get

`2I=int_0^(pi/2)(sinx+cosx)/(sinx+cosx)dx`

`=int_0^(pi/2)1 dx`

`=[x]_0^(pi/2)`

`=pi/2-0`

`2I=pi/2`

`I=pi/4`

`therefore int_0^(pi/2)sinx/(sinx+cosx)dx=pi/4`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (July)

APPEARS IN

संबंधित प्रश्न

If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`

(A) 1

(B) 2

(C) –1

(D) –2


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/4) log (1+ tan x) dx`


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Evaluate = `int (tan x)/(sec x + tan x)` . dx


`int_1^2 1/(2x + 3)  dx` = ______


`int_0^{pi/2} log(tanx)dx` = ______


If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


`int_-1^1x^2/(1+x^2)  dx=` ______.


`int_0^pi x sin^2x dx` = ______ 


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


Evaluate the following:

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.


The integral `int_0^2||x - 1| -x|dx` is equal to ______.


Evaluate: `int_0^π 1/(5 + 4 cos x)dx`


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


`int_1^2 x logx  dx`= ______


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate:

`int_0^1 |2x + 1|dx`


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate the following integral:

`int_0^1 x (1 - x)^5 dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/(9x^2 - 1) dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×