Advertisements
Advertisements
प्रश्न
Evaluate = `int (tan x)/(sec x + tan x)` . dx
उत्तर
Let I = `int (tan x)/(sec x + tan x)` . dx
I = `int (sinx/cosx)/((1/cosx + sinx/cosx))` dx
= `int ((sinx/cosx))/(((1 + sinx)/cos))` dx
= `int (sinx)/(1 + sin x)` dx
= `int [sinx/1 + sinx xx (1 - sinx)/(1 - sinx)]` dx
= `int (sin x - sin^2x)/cos^2x` dx
= `int (sinx - sin^2x)/cos^2x` dx
= `int sinx/cos. 1/cosx dx - int (sin^2x)/cos^2x dx`
= `int tan x . sec x dx - int (sec^2 x -1)` dx
= `int tanx. sec x dx - [int sec^2x dx - int 1. dx]`
= sec x - tan x + x + c
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
`int_"a"^"b" "f"(x) "d"x` = ______
`int_(-7)^7 x^3/(x^2 + 7) "d"x` = ______
Evaluate `int_0^1 x(1 - x)^5 "d"x`
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
Evaluate the following:
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:
`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
If `int_0^(π/2) log cos x dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.
`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.
Evaluate `int_-1^1 |x^4 - x|dx`.
Evaluate the following definite integral:
`int_4^9 1/sqrt"x" "dx"`
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate:
`int_0^6 |x + 3|dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`