हिंदी

If xxdxxkkc∫(logx)2xdx=(logx)kk+c, then the value of k is: - Mathematics

Advertisements
Advertisements

प्रश्न

If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:

विकल्प

  • 3

  • 2

  • 1

  • None of the above options

MCQ

उत्तर

3

Explanation:

Given, `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`

Taking L.H.S. = `int (log "x")^2/"x" "dx"`

Let, log x = t

∴ `1/"x" "dx" = "dt"`

= `int "t"^2"dt" = "t"^3/3 + "c"`

Substituting the value of t,

= `(log "x")^3/3 + "c"`

On comparing with R.H.S. we get

k = 3

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (April) Set 1

संबंधित प्रश्न

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of the definite integral, evaluate the integral:

`int_(-5)^5 | x + 2| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^2 xsqrt(2 -x)dx`


\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.


Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Evaluate : `int _0^(pi/2) "sin"^ 2  "x"  "dx"`


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


Evaluate `int_1^3 x^2*log x  "d"x`


`int (cos x + x sin x)/(x(x + cos x))`dx = ?


`int_0^{pi/2} log(tanx)dx` = ______


`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.


`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______ 


`int_-1^1x^2/(1+x^2)  dx=` ______.


`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`


Evaluate the following:

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to ______.


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`


Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx


Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`


The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×