हिंदी

Afxdxafxdxafkxdx∫02af(x)dx=∫0af(x)dx+∫0af(k-x)dx, then the value of k is: - Mathematics

Advertisements
Advertisements

प्रश्न

`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:

विकल्प

  • a

  • 2a

  • Independent of a

  • None of the above options

MCQ

उत्तर

2a

Explanation:

Given, `int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"` ...........(i)

We know, from properties of integrals

`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"(2"a" - "x") "dx"` ..........(ii)

From equations (i) and (ii), we get

k = 2a

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (April) Set 1

संबंधित प्रश्न

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx`  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.


`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


`int_2^3 x/(x^2 - 1)` dx = ______


`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.


`int_0^1 x tan^-1x  dx` = ______ 


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


`int_-1^1x^2/(1+x^2)  dx=` ______.


`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


Evaluate:

`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`


Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`


If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0

⇒ `1/4 (square - square)` = 0

⇒ b4 – `square` = 0

⇒ (b2 – a2)(`square` + `square`) = 0

⇒ b2 – `square` = 0 as a2 + b2 ≠ 0

⇒ b = ± `square`


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x))  dx`


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Evaluate the following integral:

`int_0^1x(1 - x)^5dx`


Evaluate the following definite intergral:

`int_1^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×