Advertisements
Advertisements
प्रश्न
`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:
पर्याय
a
2a
Independent of a
None of the above options
उत्तर
2a
Explanation:
Given, `int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"` ...........(i)
We know, from properties of integrals
`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"(2"a" - "x") "dx"` ..........(ii)
From equations (i) and (ii), we get
k = 2a
APPEARS IN
संबंधित प्रश्न
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`
(A) 1
(B) 2
(C) –1
(D) –2
By using the properties of the definite integral, evaluate the integral:
`int_(-5)^5 | x + 2| dx`
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
State whether the following statement is True or False:
`int_(-5)^5 x/(x^2 + 7) "d"x` = 10
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_0^1 log(1/x - 1) "dx"` = ______.
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
Evaluate the following:
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
`int_0^1|3x - 1|dx` equals ______.
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
Evaluate: `int_0^π x/(1 + sinx)dx`.
Evaluate the following limit :
`lim_("x"->3)[sqrt("x"+6)/"x"]`
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2)dx`
Evaluate the following definite intergral:
`int_1^3logx dx`