मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Prove that: ∫2a0f(x)dx=∫a0f(x)dx+∫a0f(2a−x)dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`

उत्तर

`LHS=int_0^(2a)f(x)dx=int_0^af(x)dx+int_a^(2a)f(x)dx.........(1)`

Substitute x = a + t in the second integral

dx=dt

When x = a, t = 0.

When x = 2a, t = a.

`thereforeint_a^(2a)f(x)dx=int_0^af(a+t)dt`

`=int_0^af(a+(a-t))dt (therefore int_0^af(x)dx=int_0^a f(a-x)dx)`

 

`=int_0^af(2a-t)dt`

 

`int_a^(2a)f(x)dx=int_0^af(2a-x)dx (therefore int_0^af(t)dt=int_0^af(x)dx)`

Using the above in (1), we get

`int_0^(2a)f(x)dx=int_0^af(x)dx+int_a^(2a)f(x)dx`

`=int_0^af(x)dx+int_0^af(2a-x)dx=RHS ("Proved")`

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March)

APPEARS IN

संबंधित प्रश्‍न

Evaluate : `intsec^nxtanxdx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/4) log (1+ tan x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(2x) cos^5 xdx`


`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.


\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]

Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))  dx` = ______.


`int_0^1 "e"^(2x) "d"x` = ______


By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`.

Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`     ......(i)

Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`, we get

I = `int_2^5 ("(  )")/(sqrt(7 - x) + "(  )")  "d"x`   ......(ii)

Adding equations (i) and (ii), we get

2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x))  "d"x + (   )  "d"x`

2I = `int_2^5 (("(    )" + "(     )")/("(    )" + "(     )"))  "d"x`

2I = `square`

∴ I =  `square`


`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______


`int_2^3 x/(x^2 - 1)` dx = ______


`int_0^{pi/2} cos^2x  dx` = ______ 


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_0^1 log(1/x - 1) "dx"` = ______.


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to ______.


`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:


If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.


Evaluate: `int_0^π 1/(5 + 4 cos x)dx`


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Evaluate:

`int_0^1 |2x + 1|dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate:

`int_0^6 |x + 3|dx`


Evaluate the following definite intergral:

`int_1^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×