Advertisements
Advertisements
प्रश्न
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
पर्याय
Both (A) and (R) are true and (R) is the correct explanation of (A).
Both (A) and (R) are true, but (R) is not the correct explanation of (A).
(A) is true, but (R) is false.
(A) is false, but (R) is true.
उत्तर
Both (A) and (R) are true and (R) is the correct explanation of (A).
Explanation:
I = `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` ...(i)
Using property of definite integral
`int_a^b f(x) dx = int_a^b f(a + b - x) dx`
I = `int_2^8 sqrt(x)/(sqrt(10 - x) + sqrt(x))dx` ...(ii)
Adding equations (i) and (ii)
2I = `int_2^8 (sqrt(10 - x) + sqrt(x))/(sqrt(10 - x) + sqrt(x))dx`
= `int_2^8 dx`
= `[x]_2^8`
= 8 – 2
= 6
`\implies` I = 3
R is also true as the property P4 is
`int_a^b f(x)dx = int_a^b f(a + b - x)`
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^2 xsqrt(2 -x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
`int_1^2 1/(2x + 3) dx` = ______
State whether the following statement is True or False:
`int_(-5)^5 x/(x^2 + 7) "d"x` = 10
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
`int_2^3 x/(x^2 - 1)` dx = ______
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
`int_0^pi sin^2x.cos^2x dx` = ______
`int_0^1 log(1/x - 1) "dx"` = ______.
`int_0^pi x*sin x*cos^4x "d"x` = ______.
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
`int (dx)/(e^x + e^(-x))` is equal to ______.
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
`int_0^1|3x - 1|dx` equals ______.
If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Solve.
`int_0^1e^(x^2)x^3dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`