मराठी

Assertion (A): ∫2810-xx+10-xdx = 3. Reason (R): ∫abf(x)dx=∫abf(a+b-x)dx. - Mathematics

Advertisements
Advertisements

प्रश्न

Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.

पर्याय

  • Both (A) and (R) are true and (R) is the correct explanation of (A).

  • Both (A) and (R) are true, but (R) is not the correct explanation of (A).

  • (A) is true, but (R) is false.

  • (A) is false, but (R) is true.

MCQ

उत्तर

Both (A) and (R) are true and (R) is the correct explanation of (A).

Explanation:

I = `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx`  ...(i)

Using property of definite integral

`int_a^b f(x) dx = int_a^b f(a + b - x) dx`

I = `int_2^8 sqrt(x)/(sqrt(10 - x) + sqrt(x))dx`  ...(ii)

Adding equations (i) and (ii)

2I = `int_2^8 (sqrt(10 - x) + sqrt(x))/(sqrt(10 - x) + sqrt(x))dx`

= `int_2^8 dx`

= `[x]_2^8`

= 8 – 2

= 6

`\implies` I = 3

R is also true as the property P4 is

`int_a^b f(x)dx = int_a^b f(a + b - x)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Delhi Set 1

संबंधित प्रश्‍न

By using the properties of the definite integral, evaluate the integral:

`int_2^8 |x - 5| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^2 xsqrt(2 -x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate : `int _0^(pi/2) "sin"^ 2  "x"  "dx"`


`int_1^2 1/(2x + 3)  dx` = ______


State whether the following statement is True or False:

`int_(-5)^5 x/(x^2 + 7)  "d"x` = 10


The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.


`int_2^3 x/(x^2 - 1)` dx = ______


`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_0^1 log(1/x - 1) "dx"` = ______.


`int_0^pi x*sin x*cos^4x  "d"x` = ______.


`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.


`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.


`int (dx)/(e^x + e^(-x))` is equal to ______.


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.


`int_0^1|3x - 1|dx` equals ______.


If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.


The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Solve.

`int_0^1e^(x^2)x^3dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×