Advertisements
Advertisements
प्रश्न
`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.
पर्याय
0
2
π
1
उत्तर
`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is π.
Explanation:
Let `int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1)` dx
`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x) dx + int_((-pi)/2)^(pi/2) 1* dx`
Because `(x^3 + x cos x + tan^5 x)` is an equivalent function.
Hence, `int_(-pi//2)^(pi//2) (x^3 + x cos x + tan^5 x) dx = 0`
`=> I = 0 + [x]_(-pi/2)^(pi/2)`
`= pi/2 - (- pi/2)`
`= pi/2 + pi/2 = pi`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
Evaluate`int (1)/(x(3+log x))dx`
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
Evaluate = `int (tan x)/(sec x + tan x)` . dx
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
`int_0^{pi/2} log(tanx)dx` = ______
`int_0^4 1/(1 + sqrtx)`dx = ______.
`int_2^3 x/(x^2 - 1)` dx = ______
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
`int_0^1 x tan^-1x dx` = ______
The value of `int_1^3 dx/(x(1 + x^2))` is ______
`int_-1^1x^2/(1+x^2) dx=` ______.
`int_(-2)^2 |x cos pix| "d"x` is equal to ______.
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
Evaluate: `int_(-1)^3 |x^3 - x|dx`
If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0
⇒ `1/4 (square - square)` = 0
⇒ b4 – `square` = 0
⇒ (b2 – a2)(`square` + `square`) = 0
⇒ b2 – `square` = 0 as a2 + b2 ≠ 0
⇒ b = ± `square`
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
If f(x) = `{{:(x^2",", "where" 0 ≤ x < 1),(sqrt(x)",", "when" 1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.
`int_0^(π/4) x. sec^2 x dx` = ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x dx` is ______.
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Solve.
`int_0^1e^(x^2)x^3dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate:
`int_0^sqrt(2)[x^2]dx`