मराठी

∫-π2π2(x3+xcosx+tan5x+1)dx is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.

पर्याय

  • 0

  • 2

  • π

  • 1

MCQ
रिकाम्या जागा भरा

उत्तर

`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is π.

Explanation:

Let `int_(-pi/2)^(pi/2) (x^3 + x  cos x + tan^5 x + 1)`  dx

`int_(-pi/2)^(pi/2) (x^3 + x  cos x + tan^5 x) dx + int_((-pi)/2)^(pi/2) 1* dx`

Because `(x^3 + x cos x + tan^5 x)` is an equivalent function.

Hence, `int_(-pi//2)^(pi//2) (x^3 + x  cos x + tan^5 x) dx = 0`

`=> I = 0 + [x]_(-pi/2)^(pi/2)`

`= pi/2 - (- pi/2)`

`= pi/2 + pi/2 = pi`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.11 [पृष्ठ ३४७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.11 | Q 20 | पृष्ठ ३४७

संबंधित प्रश्‍न

Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) cos^2 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


Evaluate`int (1)/(x(3+log x))dx` 


Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


Evaluate = `int (tan x)/(sec x + tan x)` . dx


Using properties of definite integrals, evaluate 

`int_0^(π/2)  sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


`int_0^{pi/2} log(tanx)dx` = ______


`int_0^4 1/(1 + sqrtx)`dx = ______.


`int_2^3 x/(x^2 - 1)` dx = ______


`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.


`int_0^1 x tan^-1x  dx` = ______ 


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


`int_-1^1x^2/(1+x^2)  dx=` ______.


`int_(-2)^2 |x cos pix| "d"x` is equal to ______.


Evaluate the following:

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to ______.


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx


Evaluate: `int_(-1)^3 |x^3 - x|dx`


If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0

⇒ `1/4 (square - square)` = 0

⇒ b4 – `square` = 0

⇒ (b2 – a2)(`square` + `square`) = 0

⇒ b2 – `square` = 0 as a2 + b2 ≠ 0

⇒ b = ± `square`


The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.


If f(x) = `{{:(x^2",", "where"  0 ≤ x < 1),(sqrt(x)",", "when"  1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.


`int_0^(π/4) x. sec^2 x  dx` = ______.


Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`


`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.


For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x  dx` is ______.


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


`int_0^(2a)f(x)/(f(x)+f(2a-x))  dx` = ______


Evaluate the following integral:

`int_-9^9 x^3 / (4 - x^2) dx`


Solve the following.

`int_0^1 e^(x^2) x^3dx`


Solve.

`int_0^1e^(x^2)x^3dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate:

`int_0^sqrt(2)[x^2]dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×