मराठी

Using Properties of Definite Integrals, Evaluate Int_0^(π/2) Sqrt(Sin X )/ (Sqrtsin X + Sqrtcos X) - Mathematics

Advertisements
Advertisements

प्रश्न

Using properties of definite integrals, evaluate 

`int_0^(π/2)  sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`

बेरीज

उत्तर

I = `int_0^(π/2)  sqrt(sin x )/ (sqrtsin x + sqrtcos x)  dx`        ...(i)

  = `int_0^(π/2)  sqrtsin (π/2 - x)/ (sqrtsin (π/2 - x) + sqrtcos (π/2 - x)  dx`           

by using `int_0^a  f (x)  dx = int_0^a f (a - x ) dx`

I = `int_0^(π/2)  sqrt(cos x )/ (sqrtcos x + sqrtsin x)  dx`          ...(ii)

Adding equations (i) and (ii), we have

2I = `int_0^(π/2)  (sqrtsin x + sqrtcos x )/ (sqrtsin x + sqrtcos x) dx`

2I = `int_0^(π/2)  1 dx = [x]_0^(π/2)`

I = `(1)/(2) [ (π)/(2) - 0 ]`

I = `(π)/(4)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March)

APPEARS IN

संबंधित प्रश्‍न

 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/4) log (1+ tan x) dx`


Evaluate`int (1)/(x(3+log x))dx` 


Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total  revenue R is increasing.


Find `dy/dx, if y = cos^-1 ( sin 5x)`


`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))  dx` = ______.


Evaluate `int_1^3 x^2*log x  "d"x`


`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______


The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.


`int_-9^9 x^3/(4 - x^2)` dx = ______


If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.


`int_{pi/6}^{pi/3} sin^2x dx` = ______ 


`int_0^1 log(1/x - 1) "dx"` = ______.


`int_-1^1x^2/(1+x^2)  dx=` ______.


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`


`int_a^b f(x)dx` = ______.


`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.


If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.


`int_0^(π/4) x. sec^2 x  dx` = ______.


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following integral:

`int_-9^9 x^3 / (4 - x^2) dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate:

`int_0^6 |x + 3|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×