Advertisements
Advertisements
प्रश्न
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
उत्तर
I = `int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x) dx` ...(i)
= `int_0^(π/2) sqrtsin (π/2 - x)/ (sqrtsin (π/2 - x) + sqrtcos (π/2 - x) dx`
by using `int_0^a f (x) dx = int_0^a f (a - x ) dx`
I = `int_0^(π/2) sqrt(cos x )/ (sqrtcos x + sqrtsin x) dx` ...(ii)
Adding equations (i) and (ii), we have
2I = `int_0^(π/2) (sqrtsin x + sqrtcos x )/ (sqrtsin x + sqrtcos x) dx`
2I = `int_0^(π/2) 1 dx = [x]_0^(π/2)`
I = `(1)/(2) [ (π)/(2) - 0 ]`
I = `(π)/(4)`
APPEARS IN
संबंधित प्रश्न
Evaluate : `intlogx/(1+logx)^2dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
Evaluate`int (1)/(x(3+log x))dx`
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total revenue R is increasing.
Find `dy/dx, if y = cos^-1 ( sin 5x)`
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x)) dx` = ______.
Evaluate `int_1^3 x^2*log x "d"x`
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
`int_-9^9 x^3/(4 - x^2)` dx = ______
If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.
`int_{pi/6}^{pi/3} sin^2x dx` = ______
`int_0^1 log(1/x - 1) "dx"` = ______.
`int_-1^1x^2/(1+x^2) dx=` ______.
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
`int_a^b f(x)dx` = ______.
`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
`int_0^(π/4) x. sec^2 x dx` = ______.
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate:
`int_0^6 |x + 3|dx`