Advertisements
Advertisements
प्रश्न
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x)) dx` = ______.
पर्याय
`7/2`
`5/2`
7
2
उत्तर
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))` dx` = bbunderline(5/2)`
Explanation:
Let
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))` dx
Using the substitution u = 9 − x, we find that the integral transforms to
`int_2^7 sqrt(9 - x)/(sqrt(x) + sqrt(9 - x))` dx
Adding these two expressions gives
2I = `int_2^7 1 dx`
2I = 7 − 2
2I = 5
∴ I = `5/2`
APPEARS IN
संबंधित प्रश्न
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
Evaluate : `intsec^nxtanxdx`
Evaluate `int_(-2)^2x^2/(1+5^x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
Evaluate`int (1)/(x(3+log x))dx`
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
Evaluate : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
Find `dy/dx, if y = cos^-1 ( sin 5x)`
Evaluate = `int (tan x)/(sec x + tan x)` . dx
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
`int_"a"^"b" "f"(x) "d"x` = ______
State whether the following statement is True or False:
`int_(-5)^5 x/(x^2 + 7) "d"x` = 10
Evaluate `int_0^1 x(1 - x)^5 "d"x`
`int_0^{pi/2} log(tanx)dx` = ______
`int_0^4 1/(1 + sqrtx)`dx = ______.
`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______
`int_-9^9 x^3/(4 - x^2)` dx = ______
`int_0^{pi/2} xsinx dx` = ______
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
`int_0^1 log(1/x - 1) "dx"` = ______.
`int_0^pi x sin^2x dx` = ______
`int_0^9 1/(1 + sqrtx)` dx = ______
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
`int_(-2)^2 |x cos pix| "d"x` is equal to ______.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
Evaluate: `int_(-1)^3 |x^3 - x|dx`
Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`
If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0
⇒ `1/4 (square - square)` = 0
⇒ b4 – `square` = 0
⇒ (b2 – a2)(`square` + `square`) = 0
⇒ b2 – `square` = 0 as a2 + b2 ≠ 0
⇒ b = ± `square`
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
`int_0^1|3x - 1|dx` equals ______.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
If f(x) = `{{:(x^2",", "where" 0 ≤ x < 1),(sqrt(x)",", "when" 1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
Evaluate: `int_0^π x/(1 + sinx)dx`.
Evaluate the following definite integral:
`int_4^9 1/sqrt"x" "dx"`
`int_-9^9 x^3/(4-x^2) dx` =______
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate: `int_-1^1 x^17.cos^4x dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate:
`int_0^6 |x + 3|dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate:
`int_0^sqrt(2)[x^2]dx`
Evaluate the following definite intergral:
`int_1^3logx dx`