मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate : ∫ex[√(1−x2)sin^−1 x+1/√(1−x2)]dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`

उत्तर

`int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`

`=int e^x[sin^-1x +1/ (sqrt(1-x^2))]dx`

We know that  `inte^x[f(x)+f'(x)]dx=e^x.f(x)+c`

`=e^x.sin^-1x+c`

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March)

APPEARS IN

संबंधित प्रश्‍न

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (2log sin x - log sin 2x)dx`


Evaluate  : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`


The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total  revenue R is increasing.


Find `dy/dx, if y = cos^-1 ( sin 5x)`


Find : `int_  (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.


`int_"a"^"b" "f"(x)  "d"x` = ______


`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))  dx` = ______.


`int_2^4 x/(x^2 + 1)  "d"x` = ______


`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?


The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.


`int_0^{pi/2} log(tanx)dx` = ______


`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______ 


`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`


`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.


`int_(-2)^2 |x cos pix| "d"x` is equal to ______.


Evaluate the following:

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:


Evaluate:

`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.


Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


Evaluate the following limit :

`lim_("x"->3)[sqrt("x"+6)/"x"]`


 `int_-9^9 x^3/(4-x^2) dx` =______


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following integral:

`int_-9^9 x^3 / (4 - x^2) dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following definite intergral:

`int_1^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×