Advertisements
Advertisements
प्रश्न
Evaluate : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
उत्तर
let I = `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
Put x2 = t. to find constants A and B.
`"t"/("t"^2 + 5"t" + 6) = "t"/(("t" + 2)("t" + 3))`
`= "A"/("t" + 2) + "B"/"t + 3"`
∴ t = A (t + 3) + B (t + 2)
Putting t = -3 in equation (II).
-3 = B ( -1 ) ⇒ B = 3
Putting t = -2 in equation (II).
-2 = A (1) ⇒ A = -2
Substituting the values of A and replacing t by x2 in equation (I). we get
`"x"^2/("x"^4 + "5x"^2 + 6) = - 2/("x"^3 + 2) + 3/("x"^2 + 3)`
`therefore "I" = int [(-2)/("x"^2 + 2) + 3/("x"^2 + 3)] "dx"`
`= (-2) int "dx"/ ("x"^2 + 2) + 3 int "dx"/("x"^2 + 3)`
`= (-2) xx 1/sqrt2 "tan"^-1 ("x"/sqrt 2) + 3 xx 1/sqrt 3 "tan"^-1 ("x"/sqrt 3) + "c"`
`= -sqrt 2 "tan"^-1 ("x"/sqrt2) + sqrt 3 "tan"^-1 ("x"/sqrt 3) + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate : `intsec^nxtanxdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Evaluate`int (1)/(x(3+log x))dx`
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.
`int_0^1 "e"^(5logx) "d"x` = ______.
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
Evaluate the following:
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
`int_4^9 1/sqrt(x)dx` = ______.
If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.
`int_0^1|3x - 1|dx` equals ______.
Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
Evaluate `int_-1^1 |x^4 - x|dx`.
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
Evaluate the following integrals:
`int_-9^9 x^3/(4 - x^3 ) dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate:
`int_0^sqrt(2)[x^2]dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`