Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
उत्तर
Let I = `int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x` ......(i)
= `int_(- pi/4)^(pi/4) log|sin(pi/4 - pi/4 - x) + cos(pi/4 - pi/4 - x)|"d"x` ......`[because int_"a" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x]`
= `int_(- pi/4)^(pi/4) log|sin(-x) + cosx|"d"x`
= `int_(-pi/4)^(pi/4) log|cosx - sinx|"d"x` ......(ii)
Adding (i) and (ii), we get
2I = `int_(-pi/4)^(pi/4) log|cosx + sinx|"d"x + int_(-pi/4)^(pi/4) log|cosx - sinx|"d"x`
= `int_(-pi/4)^(pi/4) log|(cosx + sinx)(cosx - sinx)|"d"x`
= `int_(-pi/4)^(pi/4) log|cos^2x - sin^2x|"d"x`
∴ 2I = `int_(-pi/4)^(pi/4) log cos2x "d"x`
2I = `2 int_0^(pi/4) log cos 2x "d"x` .....`[because int_(-"a")^"a" "f"(x)"d"x = 2int_0^"a" "f"(x) "d"x "if" "f"(-x) = "f"(x)]`
∴ I = `int_0^(pi/4) log cos 2x "d"x`
Put 2x = t
⇒ dx = `"dt"//2`
Changing the limits we get
When x = 0
∴ t = 0
When x = `pi/4`
∴ t = `pi/2`
I = `1/2 int_0^(pi/2) log cos "t" "dt"` ......(iii)
I = `1/2 int_0^(pi/2) log cos (pi/2 - "t")"dt"`
I = `1/2 int_0^(pi/2) log sin "t" "dt"` ......(iv)
On adding (iii) and (iv), we get,
2I = `1/2 int_0^(pi/2) (log cos "t" + log sin "t")"dt"`
⇒ 2I = `1/2 int_0^(pi/2) log sin "t" cos "t" "dt"`
⇒ 2I = `1/2 int_0^(pi/2) (log 2 sin "t" cos "t")/2 "dt"`
⇒ 2I = `1/2 int_0^(pi/2) (log sin 2"t" - log 2) "dt"`
⇒ 4I = `int_0^(pi/2) log sin 2"t" "dt" - int_0^(pi/2) log 2 "dt"`
Put 2t = u
⇒ 2dt = du
⇒ dt = `"du"/2`
∴ 4I = `1/2 int_0^pi log sin "u" "du" - int_0^(pi/2) log 2 * "dt"`
⇒ 4I = `1/2 xx 2 int_0^(pi/2) log sin "u" "du" - log 2["t"]_0^(pi/2)`
⇒ 4I = `int_0^(pi/2) log sin "u" "du" - log 2 * pi/2`
⇒ 4I = `2"I" - pi/2 log 2` .....[From equation (ii)]
⇒ 2I = `- pi/2 log 2`
⇒ I = `pi/4 log 1/2`
∴ I = `pi/4 log 1/2`.
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Evaluate : ∫ log (1 + x2) dx
`int_2^4 x/(x^2 + 1) "d"x` = ______
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
f(x) = `{:{(x^3/k; 0 ≤ x ≤ 2), (0; "otherwise"):}` is a p.d.f. of X. The value of k is ______
`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?
`int_0^9 1/(1 + sqrtx)` dx = ______
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
Evaluate:
`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.
With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.
If `int_0^(π/2) log cos x dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Solve.
`int_0^1e^(x^2)x^3dx`