मराठी

Evaluate the following: d∫-π4π4log|sinx+cosx|dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`

बेरीज

उत्तर

Let I = `int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`  ......(i)

= `int_(- pi/4)^(pi/4) log|sin(pi/4 - pi/4 - x) + cos(pi/4 - pi/4 - x)|"d"x`  ......`[because int_"a" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x]`

= `int_(- pi/4)^(pi/4) log|sin(-x) + cosx|"d"x`

= `int_(-pi/4)^(pi/4) log|cosx - sinx|"d"x` ......(ii)

Adding (i) and (ii), we get

2I = `int_(-pi/4)^(pi/4) log|cosx + sinx|"d"x + int_(-pi/4)^(pi/4) log|cosx - sinx|"d"x`

= `int_(-pi/4)^(pi/4) log|(cosx + sinx)(cosx - sinx)|"d"x`

= `int_(-pi/4)^(pi/4) log|cos^2x - sin^2x|"d"x`

∴ 2I = `int_(-pi/4)^(pi/4) log cos2x  "d"x`

2I = `2 int_0^(pi/4) log cos 2x  "d"x`  .....`[because int_(-"a")^"a" "f"(x)"d"x = 2int_0^"a" "f"(x) "d"x  "if"  "f"(-x) = "f"(x)]`

∴ I = `int_0^(pi/4) log cos 2x  "d"x`

Put 2x = t

⇒ dx = `"dt"//2`

Changing the limits we get

When x = 0

∴ t = 0

When x = `pi/4`

∴ t = `pi/2`

I = `1/2 int_0^(pi/2) log cos "t"  "dt"`  ......(iii)

I = `1/2 int_0^(pi/2) log cos (pi/2 - "t")"dt"`

I = `1/2 int_0^(pi/2) log sin "t"  "dt"`  ......(iv)

On adding (iii) and (iv), we get,

2I = `1/2 int_0^(pi/2) (log cos "t" + log sin "t")"dt"`

⇒ 2I = `1/2 int_0^(pi/2) log sin "t" cos "t"  "dt"`

⇒ 2I = `1/2 int_0^(pi/2) (log 2 sin "t" cos "t")/2 "dt"`

⇒ 2I = `1/2 int_0^(pi/2) (log sin 2"t" - log 2) "dt"`

⇒ 4I = `int_0^(pi/2) log sin 2"t"  "dt" - int_0^(pi/2) log 2  "dt"`

Put 2t = u

⇒ 2dt = du

⇒ dt = `"du"/2`

∴ 4I = `1/2 int_0^pi log sin "u"  "du" - int_0^(pi/2) log 2 * "dt"`

⇒ 4I = `1/2 xx 2 int_0^(pi/2) log sin "u"  "du" - log 2["t"]_0^(pi/2)`

⇒ 4I = `int_0^(pi/2) log sin "u"  "du" - log 2 * pi/2`

⇒ 4I = `2"I" - pi/2 log 2`  .....[From equation (ii)]

⇒ 2I = `- pi/2 log 2`

⇒ I = `pi/4 log  1/2`

∴ I = `pi/4 log  1/2`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 47 | पृष्ठ १६६

संबंधित प्रश्‍न

Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate : `int _0^(pi/2) "sin"^ 2  "x"  "dx"`


Evaluate :  ∫ log (1 + x2) dx


`int_2^4 x/(x^2 + 1)  "d"x` = ______


`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


f(x) =  `{:{(x^3/k;       0 ≤ x ≤ 2), (0;     "otherwise"):}` is a p.d.f. of X. The value of k is ______


`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?


`int_0^9 1/(1 + sqrtx)` dx = ______ 


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


Evaluate:

`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`


Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`


The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.


With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


Solve.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×