मराठी

Evaluate the definite integrals ∫0πxtanxsecx+tanxdx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`

बेरीज

उत्तर

Let I = `int_0^π (xtanx)/(secx + tanx)dx`    ...(1)

I = `int_0^π {((π - x)tan(π - x))/(sec(π - x) + tan(π - x))}dx` ...`(int_0^a f(x)dx = int_0^a f(a - x)dx)`

`\implies` I = `int_0^π {(-(π - x)tanx)/(-(secx + tanx))}dx`

`\implies` I = `int_0^π ((π - x)tanx)/(secx + tanx)dx`    ...(2)

Adding (1) and (2), we obtain

2I = `int_0^π (πtanx)/(secx + tanx)dx`

`implies` 2I = `πint_0^π (sinx/cosx)/(1/cosx + sinx/cosx)dx`

`implies` 2I = `πint_0^π (sinx + 1 - 1)/(1 + sinx)dx`

`implies` 2I = `πint_0^π 1.dx - πint_0^π 1/(1 + sinx)dx`

`implies` 2I = `π[x]_0^π - πint_0^π (1 - sinx)/(cos^2x)dx`

`implies` 2I = `π^2 - πint_0^π (sec^2x - tanx secx)dx`

`implies` 2I = `π^2 - π[tanx - secx]_0^π`

`implies` 2I = π[tan π – sec π – tan 0 + sec 0]

`implies` 2I = π2 – π[0 – (–1) – 0 + 1]

`implies` 2I = π2 – 2π

`implies` 2I = π(π – 2)

`implies` I = `π/2(π - 2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.12 [पृष्ठ ३५३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.12 | Q 32 | पृष्ठ ३५३

संबंधित प्रश्‍न

Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`


 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_(pi/2)^(pi/2) sin^7 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi log(1+ cos x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx`  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


Evaluate = `int (tan x)/(sec x + tan x)` . dx


Find : `int_  (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.


Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`


Evaluate `int_0^1 x(1 - x)^5  "d"x`


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______ 


`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


Evaluate the following:

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


`int (dx)/(e^x + e^(-x))` is equal to ______.


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx


If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.


The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.


The integral `int_0^2||x - 1| -x|dx` is equal to ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.


If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


Evaluate: `int_0^π x/(1 + sinx)dx`.


Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x))  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following integral:

`int_-9^9 x^3 / (4 - x^2) dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2)dx`


Evaluate the following integral:

`int_0^1 x (1 - x)^5 dx`


Evaluate:

`int_0^6 |x + 3|dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×