Advertisements
Advertisements
प्रश्न
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
उत्तर
Let I = `int_0^π (xtanx)/(secx + tanx)dx` ...(1)
I = `int_0^π {((π - x)tan(π - x))/(sec(π - x) + tan(π - x))}dx` ...`(int_0^a f(x)dx = int_0^a f(a - x)dx)`
`\implies` I = `int_0^π {(-(π - x)tanx)/(-(secx + tanx))}dx`
`\implies` I = `int_0^π ((π - x)tanx)/(secx + tanx)dx` ...(2)
Adding (1) and (2), we obtain
2I = `int_0^π (πtanx)/(secx + tanx)dx`
`implies` 2I = `πint_0^π (sinx/cosx)/(1/cosx + sinx/cosx)dx`
`implies` 2I = `πint_0^π (sinx + 1 - 1)/(1 + sinx)dx`
`implies` 2I = `πint_0^π 1.dx - πint_0^π 1/(1 + sinx)dx`
`implies` 2I = `π[x]_0^π - πint_0^π (1 - sinx)/(cos^2x)dx`
`implies` 2I = `π^2 - πint_0^π (sec^2x - tanx secx)dx`
`implies` 2I = `π^2 - π[tanx - secx]_0^π`
`implies` 2I = π[tan π – sec π – tan 0 + sec 0]
`implies` 2I = π2 – π[0 – (–1) – 0 + 1]
`implies` 2I = π2 – 2π
`implies` 2I = π(π – 2)
`implies` I = `π/2(π - 2)`
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
Evaluate : `intlogx/(1+logx)^2dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx` if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
Evaluate = `int (tan x)/(sec x + tan x)` . dx
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
Evaluate `int_0^1 x(1 - x)^5 "d"x`
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
Evaluate the following:
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
`int (dx)/(e^x + e^(-x))` is equal to ______.
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.
The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.
The integral `int_0^2||x - 1| -x|dx` is equal to ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
Evaluate: `int_0^π x/(1 + sinx)dx`.
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2)dx`
Evaluate the following integral:
`int_0^1 x (1 - x)^5 dx`
Evaluate:
`int_0^6 |x + 3|dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`