Advertisements
Advertisements
Question
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
Solution
Let I = `int_0^π (xtanx)/(secx + tanx)dx` ...(1)
I = `int_0^π {((π - x)tan(π - x))/(sec(π - x) + tan(π - x))}dx` ...`(int_0^a f(x)dx = int_0^a f(a - x)dx)`
`\implies` I = `int_0^π {(-(π - x)tanx)/(-(secx + tanx))}dx`
`\implies` I = `int_0^π ((π - x)tanx)/(secx + tanx)dx` ...(2)
Adding (1) and (2), we obtain
2I = `int_0^π (πtanx)/(secx + tanx)dx`
`implies` 2I = `πint_0^π (sinx/cosx)/(1/cosx + sinx/cosx)dx`
`implies` 2I = `πint_0^π (sinx + 1 - 1)/(1 + sinx)dx`
`implies` 2I = `πint_0^π 1.dx - πint_0^π 1/(1 + sinx)dx`
`implies` 2I = `π[x]_0^π - πint_0^π (1 - sinx)/(cos^2x)dx`
`implies` 2I = `π^2 - πint_0^π (sec^2x - tanx secx)dx`
`implies` 2I = `π^2 - π[tanx - secx]_0^π`
`implies` 2I = π[tan π – sec π – tan 0 + sec 0]
`implies` 2I = π2 – π[0 – (–1) – 0 + 1]
`implies` 2I = π2 – 2π
`implies` 2I = π(π – 2)
`implies` I = `π/2(π - 2)`
APPEARS IN
RELATED QUESTIONS
If `int_0^alpha3x^2dx=8` then the value of α is :
(a) 0
(b) -2
(c) 2
(d) ±2
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Evaluate = `int (tan x)/(sec x + tan x)` . dx
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
`int_0^2 e^x dx` = ______.
`int_"a"^"b" "f"(x) "d"x` = ______
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x)) dx` = ______.
Evaluate `int_1^3 x^2*log x "d"x`
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______
`int_0^pi sin^2x.cos^2x dx` = ______
`int_0^1 log(1/x - 1) "dx"` = ______.
The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______
`int_0^1 "e"^(5logx) "d"x` = ______.
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
Evaluate: `int_(-1)^3 |x^3 - x|dx`
If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0
⇒ `1/4 (square - square)` = 0
⇒ b4 – `square` = 0
⇒ (b2 – a2)(`square` + `square`) = 0
⇒ b2 – `square` = 0 as a2 + b2 ≠ 0
⇒ b = ± `square`
`int_a^b f(x)dx` = ______.
`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
Evaluate the following definite integral:
`int_4^9 1/sqrt"x" "dx"`
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate `int_1^2(x+3)/(x(x+2)) dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following integrals:
`int_-9^9 x^3/(4 - x^3 ) dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate:
`int_0^6 |x + 3|dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`