Advertisements
Advertisements
Question
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
Solution
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an Odd function.
APPEARS IN
RELATED QUESTIONS
Evaluate `int_(-2)^2x^2/(1+5^x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
Evaluate`int (1)/(x(3+log x))dx`
`int_(-7)^7 x^3/(x^2 + 7) "d"x` = ______
Evaluate `int_1^3 x^2*log x "d"x`
Evaluate `int_0^1 x(1 - x)^5 "d"x`
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
`int_0^{pi/2} log(tanx)dx` = ______
`int_0^1 (1 - x)^5`dx = ______.
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
`int_0^1 x tan^-1x dx` = ______
`int_0^pi x*sin x*cos^4x "d"x` = ______.
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2)dx`
Evaluate:
`int_0^6 |x + 3|dx`
Evaluate the following integral:
`int_0^1x(1 - x)^5dx`