English

Afdafd∫02af(x)dx=2∫0af(x)dx, if f(2a – x) = ______. - Mathematics

Advertisements
Advertisements

Question

`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.

Fill in the Blanks

Solution

`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = f(x).

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Solved Examples [Page 163]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Solved Examples | Q 31 | Page 163

RELATED QUESTIONS

Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) cos^2 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate  : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`


Find : `int_  (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.


`int_0^1 "e"^(2x) "d"x` = ______


`int_-9^9 x^3/(4 - x^2)` dx = ______


`int_0^{pi/2} cos^2x  dx` = ______ 


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


Evaluate `int_0^(π//4) log (1 + tanx)dx`.


Evaluate the following definite integral:

`int_4^9 1/sqrt"x" "dx"`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×