Advertisements
Advertisements
Question
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
Solution
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = f(x).
APPEARS IN
RELATED QUESTIONS
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Evaluate : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
`int_0^1 "e"^(2x) "d"x` = ______
`int_-9^9 x^3/(4 - x^2)` dx = ______
`int_0^{pi/2} cos^2x dx` = ______
The value of `int_1^3 dx/(x(1 + x^2))` is ______
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
Evaluate the following definite integral:
`int_4^9 1/sqrt"x" "dx"`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate: `int_-1^1 x^17.cos^4x dx`
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`
Evaluate the following integrals:
`int_-9^9 x^3/(4 - x^3 ) dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`