Advertisements
Advertisements
Question
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
Solution
We have I = `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x` ....(1)
= `int_0^(pi/2) (tan^7(pi/2 - x))/(cot^7(pi/2 - x) + tan^7(pi/2 - x)) "d"x` ......By (p4)
= `int_0^(pi/2) (cot^7 (x) "d"x)/(cot^7x "d"x + tan^7x)` .....(2)
Adding (1) and (2), we get
2I = `int_0^(pi/2) ((tan^7x + cot^7x)/(tan^7x + cot^7x))"d"x`
= `int_0^(pi/2) "d"x` which gives I = `pi/4`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total revenue R is increasing.
Evaluate = `int (tan x)/(sec x + tan x)` . dx
Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`
`int_"a"^"b" "f"(x) "d"x` = ______
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x)) dx` = ______.
`int_0^1 "e"^(2x) "d"x` = ______
Evaluate `int_1^3 x^2*log x "d"x`
Evaluate `int_0^1 x(1 - x)^5 "d"x`
`int_2^3 x/(x^2 - 1)` dx = ______
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
Evaluate: `int_0^π x/(1 + sinx)dx`.
Evaluate the following limit :
`lim_("x"->3)[sqrt("x"+6)/"x"]`
`int_1^2 x logx dx`= ______
Evaluate `int_1^2(x+3)/(x(x+2)) dx`
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Evaluate: `int_-1^1 x^17.cos^4x dx`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Evaluate the following integrals:
`int_-9^9 x^3/(4 - x^3 ) dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`
Evaluate the following integral:
`int_0^1x(1 - x)^5dx`
Evaluate the following definite intergral:
`int_1^3logx dx`