Advertisements
Advertisements
प्रश्न
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
उत्तर
We have I = `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x` ....(1)
= `int_0^(pi/2) (tan^7(pi/2 - x))/(cot^7(pi/2 - x) + tan^7(pi/2 - x)) "d"x` ......By (p4)
= `int_0^(pi/2) (cot^7 (x) "d"x)/(cot^7x "d"x + tan^7x)` .....(2)
Adding (1) and (2), we get
2I = `int_0^(pi/2) ((tan^7x + cot^7x)/(tan^7x + cot^7x))"d"x`
= `int_0^(pi/2) "d"x` which gives I = `pi/4`
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total revenue R is increasing.
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
Evaluate `int_0^1 x(1 - x)^5 "d"x`
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
`int_0^1 1/(2x + 5) dx` = ______.
`int_0^(π/4) x. sec^2 x dx` = ______.
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Evaluate the following integral:
`int_0^1 x (1 - x)^5 dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`