मराठी

Evaluate d∫0π2tan7xcot7x+tan7xdx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`

बेरीज

उत्तर

We have I = `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`  ....(1)

= `int_0^(pi/2) (tan^7(pi/2 - x))/(cot^7(pi/2 - x) + tan^7(pi/2 - x)) "d"x` ......By (p4)

= `int_0^(pi/2) (cot^7 (x) "d"x)/(cot^7x "d"x + tan^7x)`  .....(2)

Adding (1) and (2), we get

2I = `int_0^(pi/2) ((tan^7x + cot^7x)/(tan^7x + cot^7x))"d"x`

= `int_0^(pi/2) "d"x` which gives I = `pi/4`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Solved Examples [पृष्ठ १५१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Solved Examples | Q 10 | पृष्ठ १५१

संबंधित प्रश्‍न

Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`


Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/4) log (1+ tan x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]

State whether the following statement is True or False:

`int_(-5)^5 x/(x^2 + 7)  "d"x` = 10


By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`.

Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`     ......(i)

Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`, we get

I = `int_2^5 ("(  )")/(sqrt(7 - x) + "(  )")  "d"x`   ......(ii)

Adding equations (i) and (ii), we get

2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x))  "d"x + (   )  "d"x`

2I = `int_2^5 (("(    )" + "(     )")/("(    )" + "(     )"))  "d"x`

2I = `square`

∴ I =  `square`


If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`


`int_0^pi x sin^2x dx` = ______ 


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`


Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`


`int_0^1 1/(2x + 5) dx` = ______.


`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.


`int_0^1|3x - 1|dx` equals ______.


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


Evaluate `int_-1^1 |x^4 - x|dx`.


Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


Evaluate `int_1^2(x+3)/(x(x+2))  dx`


 `int_-9^9 x^3/(4-x^2) dx` =______


Evaluate:

`int_0^1 |2x + 1|dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2)dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×