Advertisements
Advertisements
प्रश्न
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
उत्तर
We have I = `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x` ....(1)
= `int_0^(pi/2) (tan^7(pi/2 - x))/(cot^7(pi/2 - x) + tan^7(pi/2 - x)) "d"x` ......By (p4)
= `int_0^(pi/2) (cot^7 (x) "d"x)/(cot^7x "d"x + tan^7x)` .....(2)
Adding (1) and (2), we get
2I = `int_0^(pi/2) ((tan^7x + cot^7x)/(tan^7x + cot^7x))"d"x`
= `int_0^(pi/2) "d"x` which gives I = `pi/4`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
State whether the following statement is True or False:
`int_(-5)^5 x/(x^2 + 7) "d"x` = 10
By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x`.
Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x` ......(i)
Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`, we get
I = `int_2^5 ("( )")/(sqrt(7 - x) + "( )") "d"x` ......(ii)
Adding equations (i) and (ii), we get
2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x)) "d"x + ( ) "d"x`
2I = `int_2^5 (("( )" + "( )")/("( )" + "( )")) "d"x`
2I = `square`
∴ I = `square`
If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
`int_0^pi sin^2x.cos^2x dx` = ______
`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`
`int_0^pi x sin^2x dx` = ______
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
`int_0^1 1/(2x + 5) dx` = ______.
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
`int_0^1|3x - 1|dx` equals ______.
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
Evaluate `int_-1^1 |x^4 - x|dx`.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate `int_1^2(x+3)/(x(x+2)) dx`
`int_-9^9 x^3/(4-x^2) dx` =______
Evaluate:
`int_0^1 |2x + 1|dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2)dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`