Advertisements
Advertisements
प्रश्न
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
उत्तर
We have, `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
Let f(x) = sin|x| + cos|x|
Then, f(x) = f(–x)
Since, f(x) is an even function
So, I = `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
= `2int_0^(π/2) (sinx + cosx)dx`
= `2[-cosx + sinx]_0^(π/2)`
= `2[-cos π/2 + sin π/2 + cos0 - sin0]`
= 2[0 + 1 + 1 – 0]
= 2(2)
= 4
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
Evaluate `int_(-2)^2x^2/(1+5^x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
`int_0^2 e^x dx` = ______.
Evaluate `int_0^1 x(1 - x)^5 "d"x`
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
`int_2^3 x/(x^2 - 1)` dx = ______
`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?
Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
If `int_0^(π/2) log cos x dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.
Evaluate the following definite integral:
`int_4^9 1/sqrt"x" "dx"`
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`
Evaluate the following definite intergral:
`int_1^3logx dx`