मराठी

Afdafd∫02af(x)dx=2∫0af(x)dx, if f(2a – x) = ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.

रिकाम्या जागा भरा

उत्तर

`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = f(x).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Solved Examples [पृष्ठ १६३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Solved Examples | Q 31 | पृष्ठ १६३

संबंधित प्रश्‍न

Evaluate : `intsec^nxtanxdx`


If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`

(A) 1

(B) 2

(C) –1

(D) –2


By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.


Find : `int_  (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.


`int (cos x + x sin x)/(x(x + cos x))`dx = ?


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.


`int_0^1 "e"^(5logx) "d"x` = ______.


`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.


The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))  dx` is


Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx


`int_4^9 1/sqrt(x)dx` = ______.


If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.


Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.


What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?


With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.


If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.


`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.


Evaluate `int_-1^1 |x^4 - x|dx`.


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x))  dx`


 `int_-9^9 x^3/(4-x^2) dx` =______


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2)dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×