Advertisements
Advertisements
प्रश्न
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
उत्तर
Let `I = int_ (2x+1)/((x^2+1)(x^2+4))dx`
Let `(2x+1)/((x^2+1)(x^2+4)) = (Ax + B)/(x^2 + 1) + (Cx + D)/(x^2 + 4)`
Getting A = `2/3, B = 1/3, C = (-2)/3, D = (-1)/3`
∴ `I = 2/3 int x/(x^2 + 1) dx + 1/3 int x/(x^2 + 1)dx + (- 2)/3 int (xdx)/(x^2 + 4) + (-1)/3 int dx/(x^2 + 4)`
= `1/3 log | x^2 + 1| + 1/3 tan^-1 x - 1/3 log | x^2 + 4| - 1/6 tan^-1 x/2 + C`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `intlogx/(1+logx)^2dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
`int_0^2 e^x dx` = ______.
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x)) dx` = ______.
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
`int_0^1 (1 - x)^5`dx = ______.
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
f(x) = `{:{(x^3/k; 0 ≤ x ≤ 2), (0; "otherwise"):}` is a p.d.f. of X. The value of k is ______
`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`
The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______
`int_(-2)^2 |x cos pix| "d"x` is equal to ______.
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
`int (dx)/(e^x + e^(-x))` is equal to ______.
`int_a^b f(x)dx` = ______.
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
The integral `int_0^2||x - 1| -x|dx` is equal to ______.
If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.
If f(x) = `{{:(x^2",", "where" 0 ≤ x < 1),(sqrt(x)",", "when" 1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate `int_1^2(x+3)/(x(x+2)) dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate:
`int_0^1 |2x + 1|dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`