Advertisements
Advertisements
Question
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
Solution
Let `I = int_ (2x+1)/((x^2+1)(x^2+4))dx`
Let `(2x+1)/((x^2+1)(x^2+4)) = (Ax + B)/(x^2 + 1) + (Cx + D)/(x^2 + 4)`
Getting A = `2/3, B = 1/3, C = (-2)/3, D = (-1)/3`
∴ `I = 2/3 int x/(x^2 + 1) dx + 1/3 int x/(x^2 + 1)dx + (- 2)/3 int (xdx)/(x^2 + 4) + (-1)/3 int dx/(x^2 + 4)`
= `1/3 log | x^2 + 1| + 1/3 tan^-1 x - 1/3 log | x^2 + 4| - 1/6 tan^-1 x/2 + C`.
APPEARS IN
RELATED QUESTIONS
By using the properties of the definite integral, evaluate the integral:
`int_(-5)^5 | x + 2| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
`int_"a"^"b" "f"(x) "d"x` = ______
Choose the correct alternative:
`int_(-9)^9 x^3/(4 - x^2) "d"x` =
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
`int_0^{pi/2} log(tanx)dx` = ______
`int_0^pi x*sin x*cos^4x "d"x` = ______.
Which of the following is true?
`int_(-1)^1 (x + x^3)/(9 - x^2) "d"x` = ______.
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
Evaluate the following:
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
Evaluate `int_-1^1 |x^4 - x|dx`.
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following integral:
`int_0^1x(1 - x)^5dx`