English

Find : ∫ 2 X + 1 ( X 2 + 1 ) ( X 2 + 4 ) D X . - Mathematics

Advertisements
Advertisements

Question

Find : `int_  (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.

Sum

Solution

Let `I = int_  (2x+1)/((x^2+1)(x^2+4))dx` 

 

Let `(2x+1)/((x^2+1)(x^2+4)) = (Ax + B)/(x^2 + 1) + (Cx + D)/(x^2 + 4)`

 

Getting A = `2/3, B = 1/3, C = (-2)/3, D = (-1)/3`

∴ `I = 2/3 int x/(x^2 + 1) dx + 1/3 int x/(x^2 + 1)dx + (- 2)/3 int (xdx)/(x^2 + 4) + (-1)/3 int dx/(x^2 + 4)`

 

= `1/3 log | x^2 + 1| + 1/3 tan^-1 x - 1/3 log | x^2 + 4| - 1/6 tan^-1 x/2 + C`.

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) All India Set 1 E

RELATED QUESTIONS

By using the properties of the definite integral, evaluate the integral:

`int_(-5)^5 | x + 2| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`


Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.


`int_"a"^"b" "f"(x)  "d"x` = ______


Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


`int (cos x + x sin x)/(x(x + cos x))`dx = ?


`int_0^{pi/2} log(tanx)dx` = ______


`int_0^pi x*sin x*cos^4x  "d"x` = ______.


Which of the following is true?


`int_(-1)^1 (x + x^3)/(9 - x^2)  "d"x` = ______.


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


Evaluate the following:

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.


Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`


Evaluate `int_-1^1 |x^4 - x|dx`.


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/(9x^2 - 1) dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate the following integral:

`int_0^1x(1 - x)^5dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×