Advertisements
Advertisements
Question
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.
Options
1
3
2
0
MCQ
Fill in the Blanks
Solution
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to 0.
Explanation:
Let, I = `int_((-π)/2)^(π/2) log((2 - sin x)/(2 + sin x))dx`
f(x) = `log((2 - sinx)/(2 + sinx))`
∴ f(–x) = `((2 - sin(-x))/(2 + sin(-x)))`
= `log((2 + sinx)/(2 - sinx))`
= `-log((2 - sinx)/(2 + sinx))`
= – f(x)
So, f(x) is an odd function.
Hence, `int_(-π/2)^(π/2) f(x)dx` = 0 ...`[∵ "If" f(x) "is an odd function, then" int_-a^a f(x)dx = 0]`
shaalaa.com
Is there an error in this question or solution?