English

Choose the correct alternative: ∫-99x34-x2 dx = - Mathematics and Statistics

Advertisements
Advertisements

Question

Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =

Options

  • 0

  • 3

  • 9

  • – 9

MCQ

Solution

0

shaalaa.com
  Is there an error in this question or solution?
Chapter 1.6: Definite Integration - Q.1

RELATED QUESTIONS

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) cos^2 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_(-5)^5 | x + 2| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.


Evaluate`int (1)/(x(3+log x))dx` 


Evaluate : `int _0^(pi/2) "sin"^ 2  "x"  "dx"`


The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total  revenue R is increasing.


Find `dy/dx, if y = cos^-1 ( sin 5x)`


Using properties of definite integrals, evaluate 

`int_0^(π/2)  sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`


Evaluate `int_0^1 x(1 - x)^5  "d"x`


`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?


`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?


`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______ 


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?


`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


Evaluate the following:

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to ______.


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0

⇒ `1/4 (square - square)` = 0

⇒ b4 – `square` = 0

⇒ (b2 – a2)(`square` + `square`) = 0

⇒ b2 – `square` = 0 as a2 + b2 ≠ 0

⇒ b = ± `square`


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


`int_0^1|3x - 1|dx` equals ______.


Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.


With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.


`int_0^(π/4) x. sec^2 x  dx` = ______.


Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`


The value of `int_0^(π/4) (sin 2x)dx` is ______.


`int_1^2 x logx  dx`= ______


Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x))  dx`


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Evaluate the following integral:

`int_-9^9 x^3 / (4 - x^2) dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×