Advertisements
Advertisements
Question
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x)) dx` = ______.
Options
`7/2`
`5/2`
7
2
Solution
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))` dx` = bbunderline(5/2)`
Explanation:
Let
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))` dx
Using the substitution u = 9 − x, we find that the integral transforms to
`int_2^7 sqrt(9 - x)/(sqrt(x) + sqrt(9 - x))` dx
Adding these two expressions gives
2I = `int_2^7 1 dx`
2I = 7 − 2
2I = 5
∴ I = `5/2`
APPEARS IN
RELATED QUESTIONS
Evaluate : `intlogx/(1+logx)^2dx`
Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`
If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`
(A) 1
(B) 2
(C) –1
(D) –2
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_(-5)^5 | x + 2| dx`
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
Evaluate`int (1)/(x(3+log x))dx`
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
`int_0^2 e^x dx` = ______.
`int_1^2 1/(2x + 3) dx` = ______
Evaluate `int_1^3 x^2*log x "d"x`
Evaluate `int_0^1 x(1 - x)^5 "d"x`
`int_0^{pi/2} log(tanx)dx` = ______
`int_-9^9 x^3/(4 - x^2)` dx = ______
`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?
f(x) = `{:{(x^3/k; 0 ≤ x ≤ 2), (0; "otherwise"):}` is a p.d.f. of X. The value of k is ______
`int_0^{pi/2} cos^2x dx` = ______
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______
`int_0^pi sin^2x.cos^2x dx` = ______
`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
Evaluate the following:
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
Evaluate: `int_(-1)^3 |x^3 - x|dx`
Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
The integral `int_0^2||x - 1| -x|dx` is equal to ______.
If f(x) = `{{:(x^2",", "where" 0 ≤ x < 1),(sqrt(x)",", "when" 1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.
`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
`int_1^2 x logx dx`= ______
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`
Evaluate the following integral:
`int_0^1x(1 - x)^5dx`