English

∫27xx+9-x dx = ______. - Mathematics and Statistics

Advertisements
Advertisements

Question

`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))  dx` = ______.

Options

  • `7/2`

  • `5/2`

  • 7

  • 2

MCQ
Fill in the Blanks

Solution

`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))`  dx` = bbunderline(5/2)`

Explanation:

Let

`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))`  dx

Using the substitution u = 9 − x, we find that the integral transforms to

`int_2^7 sqrt(9 - x)/(sqrt(x) + sqrt(9 - x))`  dx

Adding these two expressions gives

2I = `int_2^7 1 dx` 

2I = 7 − 2

2I = 5

∴ I = `5/2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 1.6: Definite Integration - Q.1

RELATED QUESTIONS

 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`

(A) 1

(B) 2

(C) –1

(D) –2


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_(-5)^5 | x + 2| dx`


By using the properties of the definite integral, evaluate the integral:

`int_2^8 |x - 5| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^a  sqrtx/(sqrtx + sqrt(a-x))   dx`


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Evaluate`int (1)/(x(3+log x))dx` 


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


Using properties of definite integrals, evaluate 

`int_0^(π/2)  sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`


Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`


`int_0^2 e^x dx` = ______.


`int_1^2 1/(2x + 3)  dx` = ______


Evaluate `int_1^3 x^2*log x  "d"x`


Evaluate `int_0^1 x(1 - x)^5  "d"x`


`int_0^{pi/2} log(tanx)dx` = ______


`int_-9^9 x^3/(4 - x^2)` dx = ______


`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?


f(x) =  `{:{(x^3/k;       0 ≤ x ≤ 2), (0;     "otherwise"):}` is a p.d.f. of X. The value of k is ______


`int_0^{pi/2} cos^2x  dx` = ______ 


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______ 


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______ 


`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`


Evaluate the following:

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to ______.


Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx


Evaluate: `int_(-1)^3 |x^3 - x|dx`


Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


The integral `int_0^2||x - 1| -x|dx` is equal to ______.


If f(x) = `{{:(x^2",", "where"  0 ≤ x < 1),(sqrt(x)",", "when"  1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.


`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.


The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.


With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.


Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`


Evaluate `int_0^(π//4) log (1 + tanx)dx`.


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


`int_1^2 x logx  dx`= ______


`int_0^(2a)f(x)/(f(x)+f(2a-x))  dx` = ______


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/(9x^2 - 1) dx`


Evaluate the following integral:

`int_0^1x(1 - x)^5dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×