Advertisements
Advertisements
Question
`int_1^2 1/(2x + 3) dx` = ______
Solution
`int_1^2 1/(2x + 3) dx` = `bbunderline(1/2 log(7/5))`
APPEARS IN
RELATED QUESTIONS
By using the properties of the definite integral, evaluate the integral:
`int_0^2 xsqrt(2 -x)dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Find `dy/dx, if y = cos^-1 ( sin 5x)`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
`int_"a"^"b" "f"(x) "d"x` = ______
`int_0^1 "e"^(2x) "d"x` = ______
Evaluate `int_1^3 x^2*log x "d"x`
Evaluate `int_0^1 x(1 - x)^5 "d"x`
`int_2^3 x/(x^2 - 1)` dx = ______
`int_0^{pi/2} cos^2x dx` = ______
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_0^pi sin^2x.cos^2x dx` = ______
`int_0^1 log(1/x - 1) "dx"` = ______.
`int_0^pi x*sin x*cos^4x "d"x` = ______.
`int_0^9 1/(1 + sqrtx)` dx = ______
Which of the following is true?
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:
The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.
`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
Evaluate `int_-1^1 |x^4 - x|dx`.
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
Evaluate: `int_0^π x/(1 + sinx)dx`.
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`